Novel functional interactions between Trk kinase and p75 neurotrophin receptor in neuroblastoma cells
Authors
Lachyankar, Mahesh B.Condon, Peter J.
Daou, Marie-Claire
De, Asit K.
Levine, John B.
Obermeier, Axel
Ross, Alonzo H.
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyGraduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2002-12-28Keywords
Animals; Antibodies, Blocking; Apoptosis; Blotting, Western; Brain-Derived Neurotrophic Factor; Carrier Proteins; Caspase 1; Caspase 3; Caspases; Cell Differentiation; Cell Survival; Dose-Response Relationship, Drug; *Drug Synergism; Epidermal Growth Factor; Flow Cytometry; Humans; Membrane Proteins; Mitogen-Activated Protein Kinase Kinases; Nerve Growth Factor; Neurites; Neuroblastoma; PC12 Cells; PTEN Phosphohydrolase; Phosphoric Monoester Hydrolases; Phosphorylation; Precipitin Tests; Protein Folding; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-cbl; Rats; Receptor, Epidermal Growth Factor; Receptor, Nerve Growth Factor; *Receptor, trkA; Receptors, Nerve Growth Factor; Recombinant Fusion Proteins; Time Factors; Transfection; Tumor Cells, Cultured; Tumor Suppressor Proteins; *Ubiquitin-Protein LigasesLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis.Source
J Neurosci Res. 2003 Jan 15;71(2):157-72. Link to article on publisher's siteDOI
10.1002/jnr.10480Permanent Link to this Item
http://hdl.handle.net/20.500.14038/33980PubMed ID
12503079Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1002/jnr.10480
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Analysis of differential gene regulation in adequate versus inadequate secretory-phase endometrial complementary deoxyribonucleic acid populations from the rhesus monkeyOkulicz, William C.; Ace, Christopher I.; Longcope, Christopher; Tast, Janet (1996-11-01)The ability to create artificial menstrual cycles in the rhesus monkey provides a model for studies on the regulation of genes and gene networks by estradiol or progesterone (P) in the primate endometrium. This model allowed us to create both a normal level of secretory phase P or an inadequate level of secretory phase P, i.e. endometria that cannot support implantation. The objective of our present study focused on PCR analyses of genes for several factors that are believed to be important in the proper maturation of the endometrium. Complementary DNA (cDNA) populations were prepared from endometria harvested on day 13 (peak E level), days 21-23 of an adequate secretory phase (PcDNA) and days 21-23 of an inadequate secretory phase (IcDNA). Although placental protein 14, leukemia inhibitory factor and 17-beta hydroxysteroid dehydrogenase displayed highly upregulated levels in PcDNA (P-activated genes), there was little or no up-regulation in IcDNA. Transforming growth factor-beta 2 and its receptor and insulin growth factor-I and its receptor were up-regulated in PcDNA, whereas little or no expression was observed in IcDNA. Regulators of the cell cycle and transcription, such as retinoblastoma, c-fos, and c-jun genes, were also greatly underexpressed in IcDNA compared with PcDNA. Interestingly, one gene that we studied, keratinocyte growth factor, that was up-regulated by P (peak E levels vs. PcDNA) was more highly expressed in IcDNA. This latter result suggests that low levels of circulating P are sufficient for expression of this gene, whereas high sustained P levels result in an autologous down-regulation. These data show that the regulation of genes that may play pivotal roles in endometrial maturation are differentially expressed in IcDNA vs. PcDNA and may, in part, characterize improper endometrial maturation.
-
Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertensionChristou, Helen; Yoshida, Atsushi; Arthur, Victoria; Morita, Toshisuke; Kourembanas, Stella (1998-06-25)Vascular endothelial growth factor (VEGF) is a potent mitogenic and permeability factor targeting predominantly endothelial cells. At least two tyrosine kinase receptors, Flk-1 and Flt-1, mediate its action and are mostly expressed by endothelial cells. VEGF and VEGF receptor expression are upregulated by hypoxia in vivo and the role of VEGF in hypoxia-induced angiogenesis has been extensively studied in a variety of disease entities. Although VEGF and its receptors are abundantly expressed in the lung, their role in hypoxic pulmonary hypertension and the accompanying vascular remodeling are incompletely understood. We report in this in vivo study that hypoxia increases mRNA levels for both VEGF and Flk-1 in the rat lung. The kinetics of the hypoxic response differ between receptor and ligand: Flk-1 mRNA showed a biphasic response to hypoxia with a significant, but transient, rise in mRNA levels observed after 9-15 h of hypoxic exposure and the highest levels noted after 3 wk. In contrast, VEGF mRNA levels did not show a significant increase with acute hypoxia, but increased progressively after 1-3 wk of hypoxia. By in situ hybridization, VEGF mRNA was localized predominantly in alveolar epithelial cells with increased signal in the lungs of hypoxic animals compared with controls. Immunohistochemical staining with anti-VEGF antibodies localized VEGF peptide throughout the lung parenchyma and was increased in hypoxic compared with normoxic animals. Furthermore, hypoxic animals had significantly higher circulating VEGF concentrations compared with normoxic controls. Lung vascular permeability as measured by extravasation of Evans Blue dye was not significantly different between normoxic and hypoxic animals, although a tendency for increased permeability was seen in the hypoxic animals. These findings suggest a possible role for VEGF in the pulmonary response to hypoxia.
-
Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafishCovassin, Laurence D.; Villefranc, Jacques A.; Kacergis, Michael C.; Weinstein, Brant M.; Lawson, Nathan D. (2006-04-18)Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.