• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingUsage StatisticsAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Lengner, Christopher J.
    Lepper, Christoph
    Van Wijnen, Andre J.
    Stein, Janet L.
    Stein, Gary S.
    Lian, Jane B.
    UMass Chan Affiliations
    Department of Cell Biology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2004-07-16
    Keywords
    Alkaline Phosphatase; Animals; Bone Morphogenetic Proteins; Cartilage; Cell Communication; Cell Differentiation; Cells, Cultured; Chondrocytes; *Chondrogenesis; Collagen Type II; Collagen Type X; Embryo, Mammalian; Extracellular Matrix; Fibroblasts; Gene Expression; Hedgehog Proteins; Hypertrophy; Mesoderm; Mice; Mice, Inbred C57BL; Osteocalcin; Stem Cells; Time Factors; Trans-Activators; Transcription Factors; *Transforming Growth Factor beta
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1002/jcp.20118
    Abstract
    Cartilage formation is an intricate process that requires temporal and spatial organization of regulatory factors in order for a mesenchymal progenitor cell to differentiate through the distinct stages of chondrogenesis. Gene function during this process has best been studied by analysis of in vivo cartilage formation in genetically altered mouse models. Mouse embryonic fibroblasts (MEFs) isolated from such mouse models have been widely used for the study of growth control and DNA damage response. Here, we address the potential of MEFs to undergo chondrogenic differentiation. We demonstrate for the first time that MEFs can enter and complete the program of chondrogenic differentiation ex vivo, from undifferentiated progenitor cells to mature, hypertrophic chondrocytes. We show that chondrogenic differentiation can be induced by cell-cell contact or BMP-2 treatment, while in combination, these conditions synergistically enhance chondrocyte differentiation resulting in the formation of 3-dimensional (3-D) cartilaginous tissue ex vivo. Temporal expression profiles of pro-chondrogenic transcription factors Bapx1 and Sox9 and cartilaginous extracellular matrix (ECM) proteins Collagen Type II and X (Coll II and Coll X) demonstrate that the in vivo progression of chondrocyte maturation is recapitulated in the MEF model system. Our findings establish the MEF as a powerful tool for the generation of cartilaginous tissue ex vivo and for the study of gene function during chondrogenesis.
    Source
    J Cell Physiol. 2004 Sep;200(3):327-33. Link to article on publisher's site
    DOI
    10.1002/jcp.20118
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/34022
    PubMed ID
    15254959
    Related Resources
    Link to article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1002/jcp.20118
    Scopus Count
    Collections
    Morningside GSBS Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.