Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors
Authors
Lian, Jane B.Javed, Amjad
Zaidi, Sayyed K.
Lengner, Christopher J.
Montecino, Martin
Van Wijnen, Andre J.
Stein, Janet L.
Stein, Gary S.
UMass Chan Affiliations
Department of Cell Biology and Cancer CenterGraduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2004-04-24Keywords
Cell Differentiation; Cell Lineage; Chromatin Assembly and Disassembly; Core Binding Factor Alpha 1 Subunit; Core Binding Factor Alpha 2 Subunit; Core Binding Factor Alpha 3 Subunit; Core Binding Factor alpha Subunits; DNA-Binding Proteins; Gene Expression Regulation; Neoplasm Proteins; Osteoblasts; *Osteogenesis; Promoter Regions (Genetics); Proto-Oncogene Proteins; Signal Transduction; Transcription FactorsLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Formation of skeletal elements during embryogenesis and the dynamic remodeling of bone in the adult involve an exquisite interplay of developmental cues, signaling proteins, transcription factors, and their coregulatory proteins that support differentiation of osteogenic lineage cells from the initial mesenchymal progenitor cell to the mature osteocyte in mineralized connective tissue. As regulatory factors continue to be identified, the complexity of the molecular mechanisms that control gene expression in osteoblast lineage cells and drive the osteoblast maturation process are being further appreciated. A central regulator of bone formation is the Runx2 (Cbfa1/AML3) transcription factor which fulfills its role as a master regulatory switch through unique properties for mediating the temporal activation and/or repression of cell growth and phenotypic genes as osteoblasts progress through stages of differentiation. This review examines the multifunctional roles of Runx2 during osteogenesis. Runx2 functions as a "platform protein" that interacts with a spectrum of coregulatory proteins to provide a combinatorial mechanism for integrating cell signaling pathways required for osteoblast differentiation and the tissue-specific regulation of gene expression. In a broader context, it has recently been appreciated that the Runx1 hematopoietic factor and the Runx3 gene associated with neural and gut development are also expressed in the skeleton, although at present our knowledge of their roles in bone formation is limited. Here we discuss the biological functions of Runx factors in promoting cell fate determination and lineage progression, which include (1) regulating gene activation and repression through coregulatory protein interactions and by supporting chromatin remodeling; (2) integrating ECM signaling and cues from developmental, hormonal, and signal transduction pathways by formation of complexes organized in subnuclear domains; and (3) mediating cell growth control. Last, a comprehensive understanding of Runx functions in the skeleton must consider the regulatory mechanisms that control Runx2 transcription and its functional activity through posttranslational modifications.Source
Crit Rev Eukaryot Gene Expr. 2004;14(1-2):1-41.Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34036PubMed ID
15104525Related Resources
Link to article in PubMedRelated items
Showing items related by title, author, creator and subject.
-
The role of TNF-receptor family members and other TRAF-dependent receptors in bone resorptionGravallese, Ellen M.; Galson, Deborah L.; Goldring, Steven R.; Auron, Philip E. (2001-02-15)The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-kappa B ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-kappa B (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.
-
Novel functional interactions between Trk kinase and p75 neurotrophin receptor in neuroblastoma cellsLachyankar, Mahesh B.; Condon, Peter J.; Daou, Marie-Claire; De, Asit K.; Levine, John B.; Obermeier, Axel; Ross, Alonzo H. (2002-12-28)To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis.
-
Subcellular partitioning of transcription factors during osteoblast differentiation: developmental association of the AML/CBF alpha/PEBP2 alpha-related transcription factor-NMP-2 with the nuclear matrixLindenmuth, Danielle M.; Van Wijnen, Andre J.; Hiebert, Scott W.; Stein, Janet L.; Lian, Jane B.; Stein, Gary S. (1997-07-01)The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype.