• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Subcellular partitioning of transcription factors during osteoblast differentiation: developmental association of the AML/CBF alpha/PEBP2 alpha-related transcription factor-NMP-2 with the nuclear matrix

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Lindenmuth, Danielle M.
    Van Wijnen, Andre J.
    Hiebert, Scott W.
    Stein, Janet L.
    Lian, Jane B.
    Stein, Gary S.
    UMass Chan Affiliations
    Department of Cell Biology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    1997-07-01
    Keywords
    Animals; Antigens, Nuclear; Cell Compartmentation; Core Binding Factor Alpha 2 Subunit; Core Binding Factors; DNA-Binding Proteins; Erythroid-Specific DNA-Binding Factors; *Gene Expression Regulation, Developmental; *Neoplasm Proteins; Nuclear Matrix; Nuclear Proteins; Osteoblasts; *Proto-Oncogene Proteins; Rats; Sp1 Transcription Factor; Transcription Factor AP-1; Transcription Factors; YY1 Transcription Factor
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1002/(SICI)1097-4644(19970701)66:1<123::AID-JCB13>3.0.CO;2-K
    Abstract
    The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype.
    Source
    J Cell Biochem. 1997 Jul 1;66(1):123-32.
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/34102
    PubMed ID
    9215534
    Related Resources
    Link to article in PubMed
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Differential regulation of mouse germline Ig gamma 1 and epsilon promoters by IL-4 and CD40

      Mao, C. S.; Stavnezer, Janet (2001-08-01)
      Before Ig class switching, RNA transcription through the specific S regions undergoing recombination is induced by cytokines and other activators that induce and direct switching. The resulting germline (GL) transcripts are essential for switch recombination. To understand the differential regulation of mouse IgG1 and IgE, we compared the promoters for GL gamma1 and epsilon transcripts. We addressed the question of why the promoter that regulates GL epsilon transcription is more responsive to IL-4 than the gamma1 promoter and also why GL epsilon transcription is more dependent on IL-4 than is gamma1 transcription. We found that the IL-4-responsive region of the GL epsilon promoter is more inducible than that of the gamma1 promoter, although each promoter contains a binding site for the IL-4-inducible transcription factor Stat6, located immediately adjacent to a binding site for a basic region leucine zipper (bZip) family protein. However, the arrangement and sequences of the sites differ between the epsilon and gamma1 promoters. The GL epsilon promoter binds Stat6 with a 10-fold higher affinity than does the gamma1 promoter. Furthermore, the bZip elements of the two promoters bind different transcription factors, as the GL epsilon promoter binds and is activated by AP-1, whereas the gamma1 promoter binds and is activated by activating transcription factor 2. C/EBPbeta and C/EBPgamma also bind the gamma1 bZip element, although they inhibit rather than activate transcription. However, inhibition of promoter activity by C/EBPbeta does not require the bZip element and may instead occur via inhibiting the activity of NF-kappaB.
    • Thumbnail

      Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming

      Yang, Chao-Shun; Chang, Kung-Yen; Rana, Tariq M. (2014-07-24)
      Although transcriptome analysis can uncover the molecular changes that occur during induced reprogramming, the functional requirements for a given factor during stepwise cell-fate transitions are left unclear. Here, we used a genome-wide RNAi screen and performed integrated transcriptome analysis to identify key genes and cellular events required at the transition steps in reprogramming. Genes associated with cell signaling pathways (e.g., Itpr1, Itpr2, and Pdia3) constitute the major regulatory networks before cells acquire pluripotency. Activation of a specific gene set (e.g., Utf1 or Tdgf1) is important for mature induced pluripotent stem cell formation. Strikingly, a major proportion of RNAi targets ( approximately 53% to 70%) includes genes whose expression levels are unchanged during reprogramming. Among these non-differentially expressed genes, Dmbx1, Hnf4g, Nobox, and Asb4 are important, whereas Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Gtf2i, and Ankrd22 are roadblocks to reprogramming. Together, our results provide a wealth of information about gene functions required at transition steps during reprogramming.
    • Thumbnail

      The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor

      Wu, Xiaoyang; Li, Hui; Chen, J. Don (2001-03-30)
      Steroid/nuclear hormone receptors are ligand-dependent transcriptional regulators that control gene expression in a wide array of biological processes. The transcriptional activity of the receptors is mediated by an N-terminal ligand-independent transcriptional activation function AF-1 and a C-terminal ligand-dependent transcriptional activation function AF-2. The nuclear receptor coactivator RAC3 (also known as AIB1/ACTR/pCIP/TRAM-1/SRC-3) is amplified in breast cancer cells, where it forms a complex with estrogen receptor (ER) and enhances AF-2 activity of the receptor. Here, we identify a putative human homologue of the yeast DNA repair and transcriptional regulator MMS19 as a RAC3-interacting protein. The human MMS19 interacts with the N-terminal PAS-A/B domain of RAC3 in vivo and in vitro through a conserved C-terminal domain. Interestingly, the human MMS19 also interacts with estrogen receptors in a ligand-independent manner but not with retinoic acid receptor or thyroid hormone receptor. Overexpression of the interacting domain of hMMS19 strongly inhibits ER-mediated transcriptional activation, indicating a dominant negative activity. In contrast, over expression of the full-length hMMS19 enhances ER-mediated transcriptional activation. We find that hMMS19 stimulates the AF-1 activity of ERalpha, but not the AF-2 activity, suggesting that hMMS19 may be an AF-1-specific transcriptional coactivator of estrogen receptor.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.