Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection
Authors
Mathew, AnujaKurane, Ichiro
Green, Sharone
Stephens, Henry A. F.
Vaughn, David W.
Kalayanarooj, Siripen
Suntayakorn, Saroj
Chandanayingyong, Dasnayanee
Ennis, Francis A.
Rothman, Alan L.
UMass Chan Affiliations
Center for Infectious Disease and Vaccine ResearchGraduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
1998-04-29Keywords
CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cells, Cultured; Child; Cross Reactions; Dengue; Dengue Virus; Epitope Mapping; Epitopes, T-Lymphocyte; HLA Antigens; Humans; Leukocytes, Mononuclear; RNA Helicases; Serine Endopeptidases; Serotyping; T-Lymphocytes, Cytotoxic; Thailand; Viral Nonstructural ProteinsLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
We examined the memory cytotoxic T-lymphocytic (CTL) responses of peripheral blood mononuclear cells (PBMC) obtained from patients in Thailand 12 months after natural symptomatic secondary dengue virus infection. In all four patients analyzed, CTLs were detected in bulk culture PBMC against nonstructural dengue virus proteins. Numerous CD4+ and CD8+ CTL lines were generated from the bulk cultures of two patients, KPP94-037 and KPP94-024, which were specific for NS1.2a (NS1 and NS2a collectively) and NS3 proteins, respectively. All CTL lines derived from both patients were cross-reactive with other serotypes of dengue virus. The CD8+ NS1.2a-specific lines from patient KPP94-037 were HLA B57 restricted, and the CD8+ NS3-specific lines from patient KPP94-024 were HLA B7 restricted. The CD4+ CTL lines from patient KPP94-037 were HLA DR7 restricted. A majority of the CD8+ CTLs isolated from patient KPP94-024 were found to recognize amino acids 221 to 232 on NS3. These results demonstrate that in Thai patients after symptomatic secondary natural dengue infections, CTLs are mainly directed against nonstructural proteins and are broadly cross-reactive.Source
J Virol. 1998 May;72(5):3999-4004.
Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34156PubMed ID
9557687Related Resources
Collections
Related items
Showing items related by title, author, creator and subject.
-
Independent regulation of lymphocytic choriomeningitis virus-specific T cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T cell lossVarga, Steven Michael; Selin, Liisa K.; Welsh, Raymond M. (2001-02-13)Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.
-
Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populationsZipris, Danny; Hillebrands, Jan-Luuk; Welsh, Raymond M.; Rozing, Jan; Xie, Jenny X.; Mordes, John P.; Greiner, Dale L.; Rossini, Aldo A. (2003-03-21)Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function.
-
Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid miceWagar, Eric J.; Cromwell, Mary A.; Shultz, Leonard D.; Woda, Bruce A.; Sullivan, John L.; Hesselton, RuthAnn M.; Greiner, Dale L. (2000-06-22)Human PBMC engraft in mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation (Hu-PBL-scid mice). Hu-PBL-NOD-scid mice generate 5- to 10-fold higher levels of human cells than do Hu-PBL-C.B-17-scid mice, and Hu-PBL-NOD-scid beta2-microglobulin-null (NOD-scid-B2mnull) mice support even higher levels of engraftment, particularly CD4+ T cells. The basis for increased engraftment of human PBMC and the functional capabilities of these cells in NOD-scid and NOD-scid-B2mnull mice are unknown. We now report that human cell proliferation in NOD-scid mice increased after in vivo depletion of NK cells. Human cell engraftment depended on CD4+ cells and required CD40-CD154 interaction, but engrafted CD4+ cells rapidly became nonresponsive to anti-CD3 Ab stimulation. Depletion of human CD8+ cells led to increased human CD4+ and CD20+ cell engraftment and increased levels of human Ig. We further document that Hu-PBL-NOD-scid mice are resistant to development of human EBV-related lymphoproliferative disorders. These disorders, however, develop rapidly following depletion of human CD8+ cells and are prevented by re-engraftment of CD8+ T cells. These data demonstrate that 1) murine NK cells regulate human cell engraftment in scid recipients; 2) human CD4+ cells are required for human CD8+ cell engraftment; and 3) once engrafted, human CD8+ cells regulate human CD4+ and CD20+ cell expansion, Ig levels, and outgrowth of EBV-related lymphoproliferative disorders. We propose that the Hu-PBL-NOD-scid model is suitable for the in vivo analysis of immunoregulatory interactions between human CD4+ and CD8+ cells.