We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Signal transduction by the epidermal growth factor receptor after functional desensitization of the receptor tyrosine protein kinase activity
UMass Chan Affiliations
Program in Molecular MedicineHoward Hughes Medical Institute
Morningside Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
1990-08-01
Metadata
Show full item recordAbstract
Previous work identified a protein kinase activity that phosphorylates the epidermal growth factor (EGF) receptor at Thr669. An assay for this protein kinase activity present in homogenates prepared from A431 human epidermoid carcinoma cells was developed using a synthetic peptide substrate corresponding to residues 663-681 of the EGF receptor (peptide T669). Here we report that a greater initial rate of T669 phosphorylation was observed in experiments using homogenates prepared from EGF- or phorbol ester-treated cells compared with control cells. EGF and 4 beta-phorbol 12-myristate 13-acetate (PMA) caused a 6-fold and a 2-fold increase in protein kinase activity, respectively. A kinetic analysis of T669 phosphorylation demonstrated that the increase in protein kinase activity observed was accounted for by an increase in Vmax. To examine the interaction between protein kinase C and signal transduction by the EGF receptor, the effect of pretreatment of cells with PMA on the subsequent response to EGF was investigated. Treatment of cells with PMA caused greater than 90% inhibition of the EGF-stimulated tyrosine phosphorylation of the EGF receptor and abolished the EGF-stimulated formation of soluble inositol phosphates. In contrast, PMA was not observed to inhibit the stimulation of T669 protein kinase activity caused by EGF. Thus, the apparent functional desensitization of the EGF receptor caused by PMA does not inhibit signal transduction mediated by the T669 protein kinase. Our results demonstrate that EGF receptor transmodulation alters the pattern of signal-transduction pathways that are utilized by the EGF receptor.Source
Proc Natl Acad Sci U S A. 1990 Aug;87(16):6107-11.
DOI
10.1073/pnas.87.16.6107Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34250PubMed ID
2166944Related Resources
ae974a485f413a2113503eed53cd6c53
10.1073/pnas.87.16.6107