TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Molecular Genetics and MicrobiologyDepartment of Cancer Biology
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2004-06-15Keywords
Animals; Antigens, CD4; Antigens, CD5; Apoptosis; Basic Helix-Loop-Helix Transcription Factors; Blotting, Northern; Blotting, Western; Chromatin; DNA-Binding Proteins; Flow Cytometry; Immunophenotyping; Intracellular Signaling Peptides and Proteins; Loss of Heterozygosity; Mice; Mice, Transgenic; Mutation; Oligonucleotide Array Sequence Analysis; Oncogene Proteins, Fusion; Precipitin Tests; Precursor Cell Lymphoblastic Leukemia-Lymphoma; TCF Transcription Factors; Thymus Gland; Time Factors; Transcription Factors; *Transcription, GeneticLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Activation of the basic-helix-loop-helix (bHLH) gene TAL1 (or SCL) is a frequent gain-of-function mutation in T cell acute lymphoblastic leukemia (T-ALL). To provide genetic evidence that tal1/scl induces leukemia by interfering with E47 and HEB, we expressed tal1/scl in an E2A or HEB heterozygous background. These mice exhibit disease acceleration and perturbed thymocyte development due to repression of E47/HEB target genes. In tal1/scl thymocytes, we find the corepressor mSin3A bound to the CD4 enhancer, whereas an E47/HEB/p300 complex is detected in wild-type thymocytes. Furthermore, tal1/scl tumors are sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data demonstrate that tal1/scl induces leukemia by repressing E47/HEB and suggest that HDAC inhibitors may prove efficacious in T-ALL patients who express TAL1/SCL.Source
Cancer Cell. 2004 Jun;5(6):587-96. Link to article on publisher's siteDOI
10.1016/j.ccr.2004.05.023Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34259PubMed ID
15193261Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1016/j.ccr.2004.05.023
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Differential regulation of mouse germline Ig gamma 1 and epsilon promoters by IL-4 and CD40Mao, C. S.; Stavnezer, Janet (2001-08-01)Before Ig class switching, RNA transcription through the specific S regions undergoing recombination is induced by cytokines and other activators that induce and direct switching. The resulting germline (GL) transcripts are essential for switch recombination. To understand the differential regulation of mouse IgG1 and IgE, we compared the promoters for GL gamma1 and epsilon transcripts. We addressed the question of why the promoter that regulates GL epsilon transcription is more responsive to IL-4 than the gamma1 promoter and also why GL epsilon transcription is more dependent on IL-4 than is gamma1 transcription. We found that the IL-4-responsive region of the GL epsilon promoter is more inducible than that of the gamma1 promoter, although each promoter contains a binding site for the IL-4-inducible transcription factor Stat6, located immediately adjacent to a binding site for a basic region leucine zipper (bZip) family protein. However, the arrangement and sequences of the sites differ between the epsilon and gamma1 promoters. The GL epsilon promoter binds Stat6 with a 10-fold higher affinity than does the gamma1 promoter. Furthermore, the bZip elements of the two promoters bind different transcription factors, as the GL epsilon promoter binds and is activated by AP-1, whereas the gamma1 promoter binds and is activated by activating transcription factor 2. C/EBPbeta and C/EBPgamma also bind the gamma1 bZip element, although they inhibit rather than activate transcription. However, inhibition of promoter activity by C/EBPbeta does not require the bZip element and may instead occur via inhibiting the activity of NF-kappaB.
-
Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogrammingYang, Chao-Shun; Chang, Kung-Yen; Rana, Tariq M. (2014-07-24)Although transcriptome analysis can uncover the molecular changes that occur during induced reprogramming, the functional requirements for a given factor during stepwise cell-fate transitions are left unclear. Here, we used a genome-wide RNAi screen and performed integrated transcriptome analysis to identify key genes and cellular events required at the transition steps in reprogramming. Genes associated with cell signaling pathways (e.g., Itpr1, Itpr2, and Pdia3) constitute the major regulatory networks before cells acquire pluripotency. Activation of a specific gene set (e.g., Utf1 or Tdgf1) is important for mature induced pluripotent stem cell formation. Strikingly, a major proportion of RNAi targets ( approximately 53% to 70%) includes genes whose expression levels are unchanged during reprogramming. Among these non-differentially expressed genes, Dmbx1, Hnf4g, Nobox, and Asb4 are important, whereas Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Gtf2i, and Ankrd22 are roadblocks to reprogramming. Together, our results provide a wealth of information about gene functions required at transition steps during reprogramming.
-
Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.Clancy, Kathleen W.; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M.; Thompson, Paul R (2017-06-16)Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.