Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation
Authors
Owen, T. A.Holthuis, Joost
Markose, Elizabeth R.
Van Wijnen, Andre J.
Wolfe, Steven A.
Grimes, Sidney R.
Lian, Jane B.
Stein, Gary S.
Document Type
Journal ArticlePublication Date
1990-07-01Keywords
Animals; Base Sequence; *CCAAT-Enhancer-Binding Proteins; Cell Differentiation; DNA-Binding Proteins; Fetus; *Gene Expression Regulation; *Genes; Histones; Humans; Mice; Molecular Sequence Data; Nuclear Proteins; Osteoblasts; *Promoter Regions (Genetics); Protein Binding; Rats; Sequence Homology, Nucleic AcidLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
A temporal sequence of interrelated cellular, biochemical, and molecular events which occurs during the progressive expression of the differentiated osteoblast phenotype in primary cultures of fetal rat calvarial cells results in the development of a bone-tissue-like organization. This ordered developmental sequence encompasses three periods: proliferation, matrix maturation, and mineralization. Initially, the cells actively proliferate and synthesize type I collagen. This is followed by a period of matrix organization and maturation and then by a period of extracellular matrix mineralization. At the completion of proliferation, when expression of osteoblast phenotype markers such as alkaline phosphatase is observed, the cell-cycle-related histone genes are down-regulated transcriptionally, suggesting that a key signaling mechanism at this transition point involves modifications of protein-DNA interactions in the regulatory elements of these growth-regulated genes. Our results demonstrate that there is a selective loss of interaction of the promoter binding factor HiNF-D with the site II region of an H4 histone gene proximal promoter that regulates the specificity and level of transcription only when the down-regulation of proliferation is accompanied by modifications in the extracellular matrix that contribute to progression of osteoblast differentiation. Thus, this specific loss of protein-DNA interaction serves as a marker for a key transition point in the osteoblast developmental sequence, where the down-regulation of proliferation is functionally coupled to the appearance of osteoblast phenotypic properties associated with the organization and maturation of an extracellular matrix that becomes competent to mineralize.Source
Proc Natl Acad Sci U S A. 1990 Jul;87(13):5129-33.
Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34272PubMed ID
2367528Related Resources
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).