• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Wysk, Mark Allen
    Yang, Derek D.
    Lu, Hong-Tao
    Flavell, Richard A.
    Davis, Roger J.
    UMass Chan Affiliations
    Program in Molecular Medicine
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    1999-03-31
    Keywords
    Amino Acid Sequence; Animals; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Cytokines; Fibroblasts; *Gene Expression Regulation; Interleukin-1; Interleukin-6; Intracellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Mice; Mice, Knockout; *Mitogen-Activated Protein Kinases; Molecular Sequence Data; Protein-Serine-Threonine Kinases; Restriction Mapping; Sorbitol; Tumor Necrosis Factor-alpha; Ultraviolet Rays; p38 Mitogen-Activated Protein Kinases
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22368/
    Abstract
    The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.
    Source

    Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3763-8.

    DOI
    10.1073/pnas.96.7.3763
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/34302
    PubMed ID
    10097111
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1073/pnas.96.7.3763
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A mammalian scaffold complex that selectively mediates MAP kinase activation

      Whitmarsh, Alan J.; Cavanagh, Julie; Tournier, Cathy; Yasuda, Jun; Davis, Roger J. (1998-09-11)
      The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.
    • Thumbnail

      Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways

      Kelkar, Nyaya; Standen, Claire L.; Davis, Roger J. (2005-03-16)
      The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
    • Thumbnail

      Molecular determinants that mediate selective activation of p38 MAP kinase isoforms

      Enslen, Herve; Brancho, Deborah Marie; Davis, Roger J. (2000-03-16)
      The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.