Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling
Authors
Paquette, Nicholas PaulConlon, Joseph E.
Sweet, Charles R.
Rus, Florentina
Wilson, Lindsay
Pereira, Andrea J.
Rosadini, Charles V.
Goutagny, Nadege
Weber, Alexander N. R.
Lane, William S.
Shaffer, Scott A.
Maniatis, Stephanie
Fitzgerald, Katherine A.
Stuart, Lynda M.
Silverman, Neal S.
UMass Chan Affiliations
Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular PharmacologyDepartment of Department of Medicine, Division of Infectious Diseases and Immunology
Document Type
Journal ArticlePublication Date
2012-07-31Keywords
AcetylationAnimals
Bacterial Proteins
Drosophila melanogaster
HEK293 Cells
Humans
*Immunity, Innate
MAP Kinase Kinase Kinases
*MAP Kinase Signaling System
NF-kappa B
Plague
Serine O-Acetyltransferase
Yersinia pestis
Immunology and Infectious Disease
Metadata
Show full item recordAbstract
The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-kappaB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-kappaB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.Source
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12710-5. doi: 10.1073/pnas.1008203109. Link to article on publisher's siteDOI
10.1073/pnas.1008203109Permanent Link to this Item
http://hdl.handle.net/20.500.14038/34919PubMed ID
22802624Notes
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1008203109/-/DCSupplemental.Related Resources
Link to Article in PubMedRights
Publisher PDF posted as allowed by the publisher's author rights policy at http://www.pnas.org/site/aboutpnas/authorfaq.xhtml.ae974a485f413a2113503eed53cd6c53
10.1073/pnas.1008203109
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinasesTournier, Cathy; Whitmarsh, Alan J.; Cavanagh, Julie; Barrett, Tamera; Davis, Roger J. (1999-01-16)The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (alpha, beta, and gamma isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7alpha isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7alpha isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7beta and MKK7gamma isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that the MKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.
-
Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathwaysKelkar, Nyaya; Standen, Claire L.; Davis, Roger J. (2005-03-16)The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
-
A mammalian scaffold complex that selectively mediates MAP kinase activationWhitmarsh, Alan J.; Cavanagh, Julie; Tournier, Cathy; Yasuda, Jun; Davis, Roger J. (1998-09-11)The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.