• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Mady, Brian J.
    Erbe, David V.
    Kurane, Ichiro
    Fanger, Michael W.
    Ennis, Francis A.
    UMass Chan Affiliations
    Department of Medicine, Division of Infectious Diseases and Immunology
    Center for Infectious Disease and Vaccine Research
    Document Type
    Journal Article
    Publication Date
    1991-11-01
    Keywords
    Immunity
    Immunology and Infectious Disease
    Immunology of Infectious Disease
    Infectious Disease
    Virology
    
    Metadata
    Show full item record
    Link to Full Text
    http://www.jimmunol.org/content/147/9/3139
    Abstract
    It is known that antibodies to dengue viruses at subneutralizing concentrations enhance dengue virus infection of Fc gamma R+ cells. This phenomenon called antibody-dependent enhancement (ADE) occurs when virus-antibody complexes bind to the Fc gamma R via the Fc portion of the Ig. It has been hypothesized that ADE may be responsible for the pathogenesis of the severe manifestations of dengue virus infection including dengue hemorrhagic fever/dengue shock syndrome. To further analyze the mechanisms of ADE, we prepared bispecific antibodies by chemically cross-linking antidengue virus antibodies to antibodies specific for Fc gamma RI or Fc gamma RII and the non-Fc R molecules beta2 microglobulin, CD15 or CD33 and examined whether these bispecific antibodies could enhance infection. Bispecific antibodies targeting dengue virus to Fc gamma RI or Fc gamma RII enhanced dengue virus infection, consistent with previous reports using conventional antibodies. Furthermore, bispecific antibodies targeting dengue virus to beta2 microglobulin, CD15 or CD33 also enhanced dengue virus infection. Bispecific antibody mediated ADE was inhibited by pretreating the cells with the appropriate blocking mAb. These results indicate that cell surface molecules other than Fc gamma R can mediate ADE and suggest that the Fc gamma R does not provide a unique signal necessary for enhanced infection. We hypothesize that directing dengue virus to the cell surface by a bispecific antibody facilitates the interaction between dengue virus and its receptor, thereby increasing its infectivity.
    Source
    J Immunol. 1991 Nov 1;147(9):3139-44.
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/35120
    PubMed ID
    1680925
    Related Resources
    Link to Article in PubMed
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.