Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1
Authors
Lee, Joo Y.Zhao, Ling
Youn, Hyung S.
Weatherill, Amy R.
Tapping, Richard
Feng, Lili
Lee, Won H.
Fitzgerald, Katherine A.
Hwang, Daniel H.
UMass Chan Affiliations
Department of Medicine, Division of Infectious Diseases and ImmunologyDocument Type
Journal ArticlePublication Date
2004-02-18Keywords
AnimalsBone Marrow
Cell Line
Cyclooxygenase 2
Dimerization
Fatty Acids
Fatty Acids, Unsaturated
Genes, Dominant
Humans
Immunoblotting
Isoenzymes
Lauric Acids
Ligands
Luciferases
Macrophages
Membrane Glycoproteins
Membrane Proteins
Mice
Mice, Inbred C3H
NF-kappa B
Nitric Oxide Synthase
Nitric Oxide Synthase Type II
Plasmids
Precipitin Tests
Prostaglandin-Endoperoxide Synthases
Receptors, Cell Surface
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction
Toll-Like Receptor 1
Toll-Like Receptor 2
Toll-Like Receptor 4
Toll-Like Receptor 6
Toll-Like Receptors
Transfection
Immunology and Infectious Disease
Metadata
Show full item recordAbstract
Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.Source
J Biol Chem. 2004 Apr 23;279(17):16971-9. Epub 2004 Feb 13. Link to article on publisher's siteDOI
10.1074/jbc.M312990200Permanent Link to this Item
http://hdl.handle.net/20.500.14038/35259PubMed ID
14966134Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1074/jbc.M312990200
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Novel engagement of CD14 and multiple toll-like receptors by group B streptococciHenneke, Phillip; Takeuchi, Osamu; van Strijp, Jos A.; Guttormsen, Hilde-Kari; Smith, Jason A.; Schromm, Andra B.; Espevik, Terje; Akira, Shizuo; Nizet, Victor; Kasper, Dennis L.; et al. (2001-12-12)Group B streptococcus (GBS) imposes a major health threat to newborn infants. Little is known about the molecular basis of GBS-induced sepsis. Both heat-inactivated whole GBS bacteria and a heat-labile soluble factor released by GBS during growth (GBS-F) induce nuclear translocation of NF-kappaB, the secretion of TNF-alpha, and the formation of NO in mouse macrophages. Macrophages from mice with a targeted disruption of MyD88 failed to secrete TNF-alpha in response to both heat-inactivated whole bacteria and GBS-F, suggesting that Toll-like receptors (TLRs) are involved in different aspects of GBS recognition. Immune cell activation by whole bacteria differed profoundly from that by secreted GBS-F. Whole GBS activated macrophages independently of TLR2 and TLR6, whereas a response to the secreted GBS-F was not observed in macrophages from TLR2-deficient animals. In addition to TLR2, TLR6 and CD14 expression were essential for GBS-F responses, whereas TLR1 and TLR4 or MD-2 did not appear to be involved. Heat lability distinguished GBS-F from peptidoglycan and lipoproteins. GBS mutants deficient in capsular polysaccharide or beta-hemolysin had GBS-F activity comparable to that of wild-type streptococci. We suggest that CD14 and TLR2 and TLR6 function as coreceptors for secreted microbial products derived from GBS and that cell wall components of GBS are recognized by TLRs distinct from TLR1, 2, 4, or 6.
-
The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signalingSchoenemeyer, Annett; Barnes, Betsy J.; Mancl, Margo E.; Latz, Eicke; Goutagny, Nadege; Pitha, Paula M.; Fitzgerald, Katherine A.; Golenbock, Douglas T. (2005-02-08)Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.
-
Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transductionFitzgerald, Katherine A.; Palsson-McDermott, Eva M.; Bowie, Andrew G.; Jefferies, Caroline A.; Mansell, Ashley S.; Brady, Gerard; Brint, Elizabeth K.; Dunne, Aisling; Gray, Pearl; Harte, Mary T.; et al. (2001-09-07)The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.