Authors
DeJesus, Michael A.Nambi, Subhalaxmi
Smith, Clare M.
Baker, Richard E.
Sassetti, Christopher M.
Ioerger, Thomas R.
UMass Chan Affiliations
Department of Microbiology and Physiological SystemsDocument Type
Journal ArticlePublication Date
2017-02-22Keywords
geneslibraries
dna transposons
gene interaction
datasets
Biochemistry
Cellular and Molecular Physiology
Computational Biology
Microbiology
Molecular Biology
Metadata
Show full item recordAbstract
Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.Source
Nucleic Acids Res. 2017 Feb 22. doi: 10.1093/nar/gkx128. Link to article on publisher's siteDOI
10.1093/nar/gkx128Permanent Link to this Item
http://hdl.handle.net/20.500.14038/36719PubMed ID
28334803Related Resources
Link to Article in PubMedRights
© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.Distribution License
http://creativecommons.org/licenses/by-nc/4.0/ae974a485f413a2113503eed53cd6c53
10.1093/nar/gkx128
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.