Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Meyers Primary Care InstituteDepartment of Quantitative Health Sciences
Department of Medicine
Document Type
Journal ArticlePublication Date
2014-04-01Keywords
AdultAged
Aged, 80 and over
Asian Continental Ancestry Group
Atrial Fibrillation
Chromosome Mapping
*Chromosomes, Human, Pair 4
Europe
European Continental Ancestry Group
Female
Genetic Markers
*Genetic Predisposition to Disease
Homeodomain Proteins
Humans
Japan
Male
Middle Aged
Polymorphism, Single Nucleotide
Transcription Factors
Cardiology
Cardiovascular Diseases
Genetics
Molecular Genetics
Metadata
Show full item recordAbstract
OBJECTIVES: This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk. BACKGROUND: AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored. METHODS: We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases). RESULTS: We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements. CONCLUSIONS: The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity. Elsevier Inc. All rights reserved.Source
J Am Coll Cardiol. 2014 Apr 1;63(12):1200-10. doi: 10.1016/j.jacc.2013.12.015. Link to article on publisher's siteDOI
10.1016/j.jacc.2013.12.015Permanent Link to this Item
http://hdl.handle.net/20.500.14038/37281PubMed ID
24486271Notes
Full author list omitted for brevity. For the full list of authors, see article.
Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1016/j.jacc.2013.12.015
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
rAAV-Mediated Gene Transfer For Study of Pathological Mechanisms and Therapeutic Intervention in Canavan's Disease: A DissertationAhmed, Seemin Seher (2014-12-01)Canavan’s Disease is a fatal Central Nervous System disorder caused by genetic defects in the enzyme – aspartoacylase and currently has no effective treatment options. We report additional phenotypes in a stringent preclinical aspartoacylase knockout mouse model. Using this model, we developed a gene therapy strategy with intravenous injections of the aspartoacylase gene packaged in recombinant adeno associated viruses (rAAVs). We first investigated the CNS gene transfer abilities of rAAV vectors that can cross the blood-brain-barrier in neonatal and adult mice and subsequently used different rAAV serotypes such as rAAV9, rAAVrh.8 and rAAVrh.10 for gene replacement therapy. A single intravenous injection rescued lethality, extended survival and corrected several disease phenotypes including motor dysfunctions. For the first time we demonstrated the existence of a therapeutic time window in the mouse model. In order to limit off-target effects of viral delivery we employed a synthetic strategy using microRNA mediated posttranscriptional detargeting to restrict rAAV expression in the CNS. We followed up with another approach to limit peripheral tissue distribution. Strikingly, we demonstrate that intracerebroventricular administration of a 50-fold lower vectors dose can rescue lethality and extend survival but not motor functions. We also study the contributions of several peripheral tissues in a primarily CNS disorder and examine several molecular attributes behind pathogenesis of Canavan’s disease using primary neural cell cultures. In summary, this thesis describes the potential of novel rAAV-mediated gene replacement therapy in Canavan’s disease and the use of rAAVs as a tool to tease out its pathological mechanism.
-
Developing an Adeno-Associated Viral Vector (AAV) Toolbox for CNS Gene Therapy: A DissertationChoudhury, Sourav Roy (2016-01-07)Neurological disorders – disorders of the brain, spine and associated nerves – are a leading contributor to global disease burden with a sizable economic cost. Adeno-associated viral (AAV) vectors have emerged as an effective platform for CNS gene therapy and have shown early promise in clinical trials. These trials involve direct infusion into brain parenchyma, an approach that may be suboptimal for treatment of neurodegenerative disorders, which often involve more than a single structure in the CNS. However, overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. We have developed novel capsids AAV-AS and AAV-B1 that lead to widespread gene delivery throughout the brain and spinal cord, particularly to neuronal populations. Both transduce the adult mouse brain >10-fold more efficiently than the clinical gold standard AAV9 upon intravascular infusion, with gene transfer to multiple neuronal sub-populations. These vectors are also capable of neuronal transduction in a normal cat. We have demonstrated the efficacy of AAV-AS in the context of Huntington's disease by knocking down huntingtin mRNA 33-50% after a single intravenous injection, which is better than what can be achieved by AAV9 at the particular dose. AAVB1 additionally transduces muscle, beta cells, pulmonary alveoli and retinal vasculature at high efficiency, and has reduced sensitivity to neutralizing antibodies in human sera. Generation of this vector toolbox represents a major step towards gaining genetic access to the entire CNS, and provides a platform to develop new gene therapies for neurodegenerative disorders.
-
Whole exome sequencing links dental tumor to an autosomal-dominant mutation in ANO5 gene associated with gnathodiaphyseal dysplasia and muscle dystrophiesAndreeva, T. V.; Tyazhelova, T. V.; Rykalina, V. N.; Gusev, F. E.; Goltsov, Andrey Y.; Zolotareva, O. I.; Aliseichik, M. P.; Borodina, T. A.; Grigorenko, Anastasia P.; Reshetov, Denis; et al. (2016-05-24)Tumors of the jaws may represent different human disorders and frequently associate with pathologic bone fractures. In this report, we analyzed two affected siblings from a family of Russian origin, with a history of dental tumors of the jaws, in correspondence to original clinical diagnosis of cementoma consistent with gigantiform cementoma (GC, OMIM: 137575). Whole exome sequencing revealed the heterozygous missense mutation c.1067G > A (p.Cys356Tyr) in ANO5 gene in these patients. To date, autosomal-dominant mutations have been described in the ANO5 gene for gnathodiaphyseal dysplasia (GDD, OMIM: 166260), and multiple recessive mutations have been described in the gene for muscle dystrophies (OMIM: 613319, 611307); the same amino acid (Cys) at the position 356 is mutated in GDD. These genetic data and similar clinical phenotypes demonstrate that the GC and GDD likely represent the same type of bone pathology. Our data illustrate the significance of mutations in single amino-acid position for particular bone tissue pathology. Modifying role of genetic variations in another gene on the severity of the monogenic trait pathology is also suggested. Finally, we propose the model explaining the tissue-specific manifestation of clinically distant bone and muscle diseases linked to mutations in one gene.