Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly
Student Authors
Jeremy FlormanAcademic Program
NeuroscienceUMass Chan Affiliations
Morningside Graduate School of Biomedical SciencesAlkema Lab
Reppert Lab
Neurobiology
Document Type
Journal ArticlePublication Date
2013-02-01
Metadata
Show full item recordAbstract
Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX. (c) 2012 Wiley Periodicals, Inc.Source
J Comp Neurol. 2013 Feb 1;521(2):267-98. doi: 10.1002/cne.23214. Link to article on publisher's siteDOI
10.1002/cne.23214Permanent Link to this Item
http://hdl.handle.net/20.500.14038/37874PubMed ID
22886450Notes
Co-author Jeremy Florman is a doctoral student in the Alkema Lab and the Neuroscience Program in the Morningside Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.
Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1002/cne.23214