• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Neurobiology
    • Neurobiology Faculty Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Neurobiology
    • Neurobiology Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Chatterjee, Abhishek
    Lamaze, Angelique
    De, Joydeep
    Mena, Wilson
    Chelot, Elisabeth
    Martin, Beatrice
    Hardin, Paul
    Kadener, Sebastian
    Emery, Patrick
    Rouyer, Francois
    UMass Chan Affiliations
    Emery Lab
    Neurobiology
    Document Type
    Journal Article
    Publication Date
    2018-07-09
    Keywords
    Neuroscience and Neurobiology
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1016/j.cub.2018.04.064
    Abstract
    The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.
    Source

    Curr Biol.2018 Jul 9;28(13):2007-2017.e4. doi: 10.1016/j.cub.2018.04.064. Epub 2018 Jun 14. Link to article on publisher's site

    DOI
    10.1016/j.cub.2018.04.064
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/37953
    PubMed ID
    29910074
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cub.2018.04.064
    Scopus Count
    Collections
    Neurobiology Faculty Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.