Conditional, inducible gene silencing in dopamine neurons reveals a sex-specific role for Rit2 GTPase in acute cocaine response and striatal function
Authors
Sweeney, Carolyn G.Kearney, Patrick J.
Fagan, Rita R.
Smith, Lindsey A.
Bolden, Nicholas C.
Zhao-Shea, Rubing
Rivera, Iris V.
Kolpakova, Jenya
Xie, Jun
Gao, Guangping
Tapper, Andrew R.
Martin, Gilles E
Melikian, Haley E
Student Authors
Jenya KolpakovaCarolyn Sweeney
Rita Fagan
Patrick Kearney
Nicholas Bolden
Academic Program
Neuroscience; MD/PhDUMass Chan Affiliations
Morningside Graduate School of Biomedical SciencesTapper Lab
Martin Lab
Melikian Lab
Viral Vector Core
Gene Therapy Center
Neurobiology
Brudnick Neuropsychiatric Research Institute
Document Type
Journal ArticlePublication Date
2019-07-05Keywords
AddictionAnxiety
Excitability
Gene delivery
Transporters in the nervous system
Amino Acids, Peptides, and Proteins
Behavioral Neurobiology
Enzymes and Coenzymes
Nervous System
Neuroscience and Neurobiology
Pharmacology
Substance Abuse and Addiction
Metadata
Show full item recordAbstract
Dopamine (DA) signaling is critical for movement, motivation, and addictive behavior. The neuronal GTPase, Rit2, is enriched in DA neurons (DANs), binds directly to the DA transporter (DAT), and is implicated in several DA-related neuropsychiatric disorders. However, it remains unknown whether Rit2 plays a role in either DAergic signaling and/or DA-dependent behaviors. Here we leveraged the TET-OFF system to conditionally silence Rit2 in Pitx3(IRES2-tTA) mouse DANs. Following DAergic Rit2 knockdown (Rit2-KD), mice displayed an anxiolytic phenotype, with no change in baseline locomotion. Further, males exhibited increased acute cocaine sensitivity, whereas DAergic Rit2-KD suppressed acute cocaine sensitivity in females. DAergic Rit2-KD did not affect presynaptic TH and DAT protein levels in females, nor was TH was affected in males; however, DAT was significantly diminished in males. Paradoxically, despite decreased DAT levels in males, striatal DA uptake was enhanced, but was not due to enhanced DAT surface expression in either dorsal or ventral striatum. Finally, patch recordings in nucleus accumbens (NAcc) medium spiny neurons (MSNs) revealed reciprocal changes in spontaneous EPSP (sEPSP) frequency in male and female D1+ and D2+ MSNs following DAergic Rit2-KD. In males, sEPSP frequency was decreased in D1+, but not D2+, MSNs, whereas in females sEPSP frequency decreased in D2+, but not D1+, MSNs. Moreover, DAergic Rit2-KD abolished the ability of cocaine to reduce sEPSP frequency in D1+, but not D2+, male MSNs. Taken together, our studies are among the first to acheive AAV-mediated, conditional and inducible DAergic knockdown in vivo. Importantly, our results provide the first evidence that DAergic Rit2 expression differentially impacts striatal function and DA-dependent behaviors in males and females.Source
Neuropsychopharmacology. 2019 Jul 5. doi: 10.1038/s41386-019-0457-x. [Epub ahead of print] Link to article on publisher's site
DOI
10.1038/s41386-019-0457-xPermanent Link to this Item
http://hdl.handle.net/20.500.14038/37974PubMed ID
31277075Notes
A preprint version of this paper is available at https://escholarship.umassmed.edu/faculty_pubs/1618/.
Related Resources
ae974a485f413a2113503eed53cd6c53
10.1038/s41386-019-0457-x