Show simple item record

dc.contributor.authorDeBruyne, Jason P.
dc.contributor.authorNoton, Elizabeth
dc.contributor.authorLambert, Christopher M.
dc.contributor.authorMaywood, Elizabeth S.
dc.contributor.authorWeaver, David R.
dc.contributor.authorReppert, Steven M.
dc.date2022-08-11T08:09:30.000
dc.date.accessioned2022-08-23T16:33:06Z
dc.date.available2022-08-23T16:33:06Z
dc.date.issued2006-05-04
dc.date.submitted2012-05-24
dc.identifier.citationNeuron. 2006 May 4;50(3):465-77. <a href="http://dx.doi.org/10.1016/j.neuron.2006.03.041">Link to article on publisher's site</a>
dc.identifier.issn0896-6273 (Linking)
dc.identifier.doi10.1016/j.neuron.2006.03.041
dc.identifier.pmid16675400
dc.identifier.urihttp://hdl.handle.net/20.500.14038/38024
dc.description.abstractThe circadian clock mechanism in the mouse is composed of interlocking transcriptional feedback loops. Two transcription factors, CLOCK and BMAL1, are believed to be essential components of the circadian clock. We have used the Cre-LoxP system to generate whole-animal knockouts of CLOCK and evaluated the resultant circadian phenotypes. Surprisingly, CLOCK-deficient mice continue to express robust circadian rhythms in locomotor activity, although they do have altered responses to light. At the molecular and biochemical levels, clock gene mRNA and protein levels in both the master clock in the suprachiasmatic nuclei and a peripheral clock in the liver show alterations in the CLOCK-deficient animals, although the molecular feedback loops continue to function. Our data challenge a central feature of the current mammalian circadian clock model regarding the necessity of CLOCK:BMAL1 heterodimers for clock function.
dc.language.isoen_US
dc.relation<a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=16675400&dopt=Abstract">Link to Article in PubMed</a>
dc.relation.urlhttp://dx.doi.org/10.1016/j.neuron.2006.03.041
dc.subjectARNTL Transcription Factors
dc.subjectAnimals
dc.subjectBasic Helix-Loop-Helix Transcription Factors
dc.subjectBiological Clocks
dc.subjectCLOCK Proteins
dc.subjectCircadian Rhythm
dc.subjectDimerization
dc.subjectFeedback, Physiological
dc.subjectLight
dc.subjectLiver
dc.subjectMice
dc.subjectMice, Inbred C57BL
dc.subjectMice, Knockout
dc.subjectMice, Transgenic
dc.subjectMotor Activity
dc.subjectPhenotype
dc.subjectPhotic Stimulation
dc.subjectRNA, Messenger
dc.subjectSuprachiasmatic Nucleus
dc.subjectTrans-Activators
dc.subjectNeuroscience and Neurobiology
dc.titleA clock shock: mouse CLOCK is not required for circadian oscillator function
dc.typeJournal Article
dc.source.journaltitleNeuron
dc.source.volume50
dc.source.issue3
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/neurobiology_pp/58
dc.identifier.contextkey2911173
html.description.abstract<p>The circadian clock mechanism in the mouse is composed of interlocking transcriptional feedback loops. Two transcription factors, CLOCK and BMAL1, are believed to be essential components of the circadian clock. We have used the Cre-LoxP system to generate whole-animal knockouts of CLOCK and evaluated the resultant circadian phenotypes. Surprisingly, CLOCK-deficient mice continue to express robust circadian rhythms in locomotor activity, although they do have altered responses to light. At the molecular and biochemical levels, clock gene mRNA and protein levels in both the master clock in the suprachiasmatic nuclei and a peripheral clock in the liver show alterations in the CLOCK-deficient animals, although the molecular feedback loops continue to function. Our data challenge a central feature of the current mammalian circadian clock model regarding the necessity of CLOCK:BMAL1 heterodimers for clock function.</p>
dc.identifier.submissionpathneurobiology_pp/58
dc.contributor.departmentWeaver Lab
dc.contributor.departmentReppert Lab
dc.contributor.departmentNeurobiology
dc.source.pages465-77


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record