We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function
UMass Chan Affiliations
Department of PathologyDocument Type
Journal ArticlePublication Date
1991-05-01Keywords
AnimalsB-Lymphocytes
Cell Division
Cytomegalovirus
Cytomegalovirus Infections
Flow Cytometry
Immunocompetence
Immunologic Deficiency Syndromes
Killer Cells, Natural
Leukocytes
Liver
Lymphocyte Activation
Lymphocytic Choriomeningitis
Lymphocytic choriomeningitis virus
Male
Mice
Spleen
T-Lymphocytes
Medical Pathology
Microbiology
Metadata
Show full item recordAbstract
The activation, proliferation, and antiviral properties of natural killer (NK) cells were examined in severe combined immunodeficiency (SCID) mice to determine the influence of mature T or B cells on virus-induced NK cell functions and to more conclusively determine the antiviral properties of prototypical CD3- NK cells. NK cells were activated to high levels of cytotoxicity 3 d after infection of mice with lymphocytic choriomeningitis virus (LCMV) or murine cytomegalovirus (MCMV). Analyses of spleen leukocytes from LCMV-infected mice by a variety of techniques indicated that the NK cells proliferated and increased in number during infection. Propidium iodide staining of the DNA of cycling cells revealed that the great majority of proliferating spleen leukocytes 3 d after LCMV infection was of the NK cell phenotype (CD3-, Ig-, Mac-1+, CZ1+, 50% Thy-1+), in contrast to uninfected mice, whose proliferating cells were predominantly of other lineages. Analyses of the NK cell responses over a 2 wk period in control CB17 mice infected with MCMV indicated a sharp rise in serum interferon (IFN) and spleen NK cell activity early (days 3-5) in infection, followed by sharp declines at later stages. In SCID mice the IFN levels continued to rise over a 10-d period, whereas the NK cell response peaked on day 3-5 and gradually tapered. In contrast to the immunocompetent CB17 mice, SCID mice did not clear the MCMV infection and eventually succumbed. SCID mice, again in contrast to immunocompetent CB17 mice, also failed to clear infections with LCMV and Pichinde virus (PV); these mice, infected as adults, did not die but instead developed long-term persistent infections. Depletion of the NK cells in vivo with antiserum to asialo GM1 rendered both SCID and CB17 control mice much more sensitive to MCMV infection, as shown by titers of virus in organs and by survival curves. In contrast, similar depletions of NK cells did not enhance the titers of the NK cell-resistant virus, LCMV. Two variants of PV, one sensitive to NK cells and the other selected for resistance to NK cells by in vivo passage, were also tested in NK cell-depleted SCID mice. The NK-sensitive PV replicated to higher titers in NK cell-depleted SCID mice, whereas the titers of the NK cell-resistant PV were the same, whether or not the mice had NK cells. These experiments support the concept that CD3- prototypical NK cells mediate resistance to NK cell-sensitive viruses via a mechanism independent of antiviral or "natural" antibody.(ABSTRACT TRUNCATED AT 400 WORDS)Source
J Exp Med. 1991 May 1;173(5):1053-63.Permanent Link to this Item
http://hdl.handle.net/20.500.14038/38169PubMed ID
1850779Related Resources
Link to Article in PubMedCollections
Related items
Showing items related by title, author, creator and subject.
-
Independent regulation of lymphocytic choriomeningitis virus-specific T cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T cell lossVarga, Steven Michael; Selin, Liisa K.; Welsh, Raymond M. (2001-02-13)Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.
-
Dynamics of memory T cell proliferation under conditions of heterologous immunity and bystander stimulationKim, Sung-Kwon; Brehm, Michael A.; Welsh, Raymond M.; Selin, Liisa K. (2002-06-22)By examining adoptively transferred CSFE-labeled lymphocytic choriomeningitis virus (LCMV)-immune donor T cells in Thy-1 congenic hosts inoculated with viruses or with the cytokine inducer poly(I:C), strikingly different responses of bona fide memory T cells were found in response to different stimuli. Poly(I:C) (cytokine) stimulation caused a limited synchronized division of memory CD8 T cells specific to each of five LCMV epitopes, with no increase and sometimes a loss in number, and no change in their epitope hierarchy. Homologous LCMV infection caused more than seven divisions of T cells specific for each epitope, with dramatic increases in number and minor changes in hierarchy. Infections with the heterologous viruses Pichinde and vaccinia (VV) caused more than seven divisions and increases in number of T cells specific to some putatively cross-reactive but not other epitopes and resulted in substantial changes in the hierarchy of the LCMV-specific T cells. Hence, there can be memory T cell division without proliferation (i.e., increase in cell number) in the absence of Ag and division with proliferation in the presence of Ag from homologous or heterologous viruses. Heterologous protective immunity between viruses is not necessarily reciprocal, given that LCMV protects against VV but VV does not protect against LCMV. VV elicited proliferation of LCMV-induced CD8 and CD4 T cells, whereas LCMV did not elicit proliferation of VV-induced T cells. Thus, depending on the pathogen and the sequence of infection, a heterologous agent may selectively stimulate the memory pool in patterns consistent with heterologous immunity.
-
Attrition of virus-specific memory CD8+ T cells during reconstitution of lymphopenic environmentsPeacock, Craig D.; Kim, Sung-Kwon; Welsh, Raymond M. (2003-07-09)Viruses can cause a severe lymphopenia early in infection and a subsequent, lasting loss of pre-existing CD8(+) memory T cells. We therefore questioned how well virus Ag-specific memory CD8(+) T cells could reconstitute mice rendered lymphopenic as a consequence of genetics, irradiation, or viral or poly(I:C)-induced cytokines. In each case, reconstitution of the CD8(+) compartment was associated with limited division of virus-specific memory T cells and a reduction in their proportion. This indicates that foreign Ag-experienced CD44(high)CD8(+) memory T cells may respond differently to homeostatic signals than other CD44(high)CD8(+) cells, and that events inducing lymphopenia may lead to a permanent reduction in T cell memory.