Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo
UMass Chan Affiliations
Howard Hughes Medical InstituteProgram in Gene Function and Expression
Program in Molecular Medicine
Document Type
Journal ArticlePublication Date
2002-10-09Keywords
AcetyltransferasesChromatin
DNA-Binding Proteins
Dose-Response Relationship, Drug
Formaldehyde
Fungal Proteins
*Gene Expression Regulation, Fungal
Genes, Fungal
Histone Acetyltransferases
Mutation
Polymerase Chain Reaction
Precipitin Tests
*Promoter Regions (Genetics)
Protein Binding
Protein Kinases
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
TATA-Box Binding Protein
Temperature
Time Factors
Trans-Activation (Genetics)
Trans-Activators
Transcription Factors
*Transcription, Genetic
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The multisubunit Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is required to activate transcription of a subset of RNA polymerase II-dependent genes. However, the contribution of each SAGA component to transcription activation is relatively unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay, we have systematically analyzed the role of SAGA components in the recruitment of TATA-box binding protein (TBP) to SAGA-dependent promoters. We show that recruitment of TBP is diminished at a number of SAGA-dependent promoters in ada1delta, spt7delta, and spt20delta null mutants, consistent with previous biochemical data suggesting that these components maintain the integrity of the SAGA complex. We also find that Spt3p is generally required for TBP binding to SAGA-dependent promoters, consistent with biochemical and genetic experiments, suggesting that Spt3p interacts with and recruits TBP to the core promoter. By contrast, Spt8p, which has been proposed to be required for the interaction between Spt3p and TBP, is required for TBP binding at only a subset of SAGA-dependent promoters. Ada2p and Ada3p are both required for TBP recruitment to Gcn5p-dependent promoters, supporting previous biochemical data that Ada2p and Ada3p are required for the histone acetyltransferase activity of Gcn5p. Finally, our results suggest that TBP-associated-factor components of SAGA are differentially required for TBP binding to SAGA-dependent promoters. In summary, we show that SAGA-dependent promoters require different combinations of SAGA components for TBP recruitment, revealing a complex combinatorial network for transcription activation in vivo.Source
Mol Cell Biol. 2002 Nov;22(21):7365-71.Permanent Link to this Item
http://hdl.handle.net/20.500.14038/38561PubMed ID
12370284Related Resources
Link to Article in PubMedCollections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.