• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multiple actions of substance P that regulate the functional properties of acetylcholine receptors of clonal rat PC12 cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Boyd, Norman D.
    Leeman, Susan E.
    UMass Chan Affiliations
    Department of Physiology
    Document Type
    Journal Article
    Publication Date
    1987-08-01
    Keywords
    Animals
    Carbachol
    Cell Line
    Clone Cells
    Ion Channels
    Kinetics
    Models, Biological
    Proadifen
    Receptors, Cholinergic
    Sodium
    Substance P
    Life Sciences
    Medicine and Health Sciences
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192071/
    Abstract
    1. The effects of substance P (SP) on each of the kinetic components of reversible desensitization (measured at 4 degrees C) and also on irreversible deactivation (measured at 22 degrees C) of the nicotinic acetylcholine receptor on PC12 cells were examined by 22Na+ influx measurements of the functional state of the receptor. 2. In the absence of agonists, SP converts the acetylcholine receptors in a time- and concentration-dependent manner, to a state that is not responsive to agonist. Upon removal of the peptide, this effect was reversible and the kinetics of the recovery of the permeability response were analysed to provide further characterization of the non-responsive state. Following exposure of cells to SP (10 microM) for 3 or more min, recovery was by a first-order process (time constant, t1/2 = 2.1 min), the same value, within experimental error, as that observed for recovery measured after the initial rapid phase of agonist-mediated desensitization. 3. In the presence of agonist, SP caused a strong enhancement of both the rate and extent of agonist-mediated desensitization. This effect was observed even at concentrations of peptide which produced only a small extent of desensitization when incubated alone. For 500 microM-carbamylcholine, the equilibrium level of desensitization (approximately 85% loss of the permeability response) was achieved at 4 degrees C in about 20 min by a biphasic process, while in the presence of 1.0 microM-SP, complete (100%) desensitization occurred by a single rapid exponential phase characterized by a t1/2 of 20 s. 4. The concentration of carbamylcholine required to produce half-maximal desensitization at equilibrium, Kdes, was 94 microM and was reduced by 6-fold in the presence of 0.3 microM-SP. 5. A mechanistic model is presented in which the receptor is viewed as existing in a dynamic conformational equilibrium between an activatable state Rc and the initial desensitized state Rd. It is proposed that SP binds preferentially to the Rd state and thus can allosterically (1) stabilize the receptor in the absence of agonist in that state, and (2) enhance, in an even lower concentration range, both the rate and extent of agonist-mediated stabilization of the receptor in the Rd state. 6. The second, slower component of agonist-mediated desensitization is, in contrast, inhibited by SP. This desensitization step appears to involve a covalent modification of the initial desensitized state (Rd) and is dependent on Ca2+. SP may exert this inhibitory effect by limiting the access of Ca2+ to an intracellular site of action.(ABSTRACT TRUNCATED AT 400 WORDS)
    Source

    J Physiol. 1987 Aug;389:69-97.

    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/38641
    PubMed ID
    2445982
    Related Resources

    Link to Article in PubMed

    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.