Interactions that determine the assembly of a retinoid X receptor/corepressor complex
Authors
Ghosh, Jagadish C.Yang, Xiaofang
Zhang, Aihua
Lambert, Millard H.
Li, Hui
Xu, H. Eric
Chen, J. Don
UMass Chan Affiliations
Department of Cancer BiologyDepartment of Biochemistry and Molecular Pharmacology
Document Type
Journal ArticlePublication Date
2002-04-25Keywords
Amino Acid SequenceBinding Sites
Cell Line
Cell Nucleus
DNA
DNA-Binding Proteins
Dimerization
Glutathione Transferase
Humans
Models, Genetic
Models, Molecular
Molecular Sequence Data
Mutation
Plasmids
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Receptors, Retinoic Acid
Recombinant Fusion Proteins
Repressor Proteins
Retinoid X Receptors
Sequence Homology, Amino Acid
Transcription Factors
Transcription, Genetic
Transfection
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The retinoid X receptor (RXR) is a key regulator in multiple signaling pathways because it can form either a homodimer with itself or a heterodimer with members of the class I nuclear receptors. The RXR-containing dimers regulate transcription by recruiting coactivators or corepressors to the target promoters. The binding of coactivators to RXR is mediated through a hydrophobic pocket formed in part by the C-terminal activation helix (AF-2). However, little is known about interactions of corepressors with RXR and its roles in transcriptional repression. Here we show that the repression activity of RXR correlates with its binding to the corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT). This intrinsic repression activity is masked by the AF-2 helix, which antagonizes SMRT binding. Inhibition of SMRT binding by the AF-2 helix requires specific amino acid sequences and the helical structure. Furthermore, the SMRT-binding site on RXR is independent of helix 11 but overlaps with the coactivator-binding pocket. On the basis of these results, we propose a structural model to help understand the molecular mechanism of corepressor recruitment by RXR.Source
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5842-7. Epub 2002 Apr 23. Link to article on publisher's site
DOI
10.1073/pnas.092043399Permanent Link to this Item
http://hdl.handle.net/20.500.14038/38949PubMed ID
11972046Related Resources
ae974a485f413a2113503eed53cd6c53
10.1073/pnas.092043399
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.