• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Near-membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Etter, Elaine F.
    Minta, Akwasi
    Poenie, Martin
    Fay, Fredric S.
    UMass Chan Affiliations
    Department of Physiology and Biomedical Imaging Group
    Document Type
    Journal Article
    Publication Date
    1996-05-28
    Keywords
    Animals
    Bufo marinus
    Calcium
    Cell Membrane
    Chelating Agents
    Cytosol
    Fluorescent Dyes
    Fura-2
    Kinetics
    Mathematics
    Membrane Potentials
    Models, Biological
    Muscle, Smooth
    Patch-Clamp Techniques
    Stomach
    Life Sciences
    Medicine and Health Sciences
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39252/
    Abstract
    (Ca2+)-sensitive processes at cell membranes involved in contraction, secretion, and neurotransmitter release are activated in situ or in vitro by Ca2+ concentrations ([Ca2+]) 10-100 times higher than [Ca2+] measured during stimulation in intact cells. This paradox might be explained if the local [Ca2+] at the cell membrane is very different from that in the rest of the cell. Soluble Ca2+ indicators, which indicate spatially averaged cytoplasmic [Ca2+], cannot resolve these localized, near-membrane [Ca2+] signals. FFP18, the newest Ca2+ indicator designed to selectively monitor near-membrane [Ca2+], has a lower Ca2+ affinity and is more water soluble than previously used membrane-associating Ca2+ indicators. Images of the intracellular distribution of FFP18 show that >65% is located on or near the plasma membrane. [Ca2+] transients recorded using FFP18 during membrane depolarization-induced Ca2+ influx show that near-membrane [Ca2+] rises faster and reaches micromolar levels at early times when the cytoplasmic [Ca2+], recorded using fura-2, has risen to only a few hundred nanomolar. High-speed series of digital images of [Ca2+] show that near-membrane [Ca2+], reported by FFP18, rises within 20 msec, peaks at 50-100 msec, and then declines. [Ca2+] reported by fura-2 rose slowly and continuously throughout the time images were acquired. The existence of these large, rapid increases in [Ca2+] directly beneath the surface membrane may explain how numerous (Ca2+)-sensitive membrane processes are activated at times when bulk cytoplasmic [Ca2+] changes are too small to activate them.
    Source

    Proc Natl Acad Sci U S A. 1996 May 28;93(11):5368-73.

    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/38976
    PubMed ID
    8643581
    Related Resources

    Link to Article in PubMed

    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.