• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingUsage StatisticsAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with 'split' circadian rhythms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Indic, Premananda
    Schwartz, William J.
    Paydarfar, David
    UMass Chan Affiliations
    Department of Neurology
    Document Type
    Journal Article
    Publication Date
    2007-12-14
    Keywords
    Animals
    Biological Clocks
    Circadian Rhythm
    Cricetinae
    Locomotion
    *Models, Biological
    Nonlinear Dynamics
    Suprachiasmatic Nucleus
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607461/
    Abstract
    Nonlinear interactions among coupled cellular oscillators are likely to underlie a variety of complex rhythmic behaviours. Here we consider the case of one such behaviour, a doubling of rhythm frequency caused by the spontaneous splitting of a population of synchronized oscillators into two subgroups each oscillating in anti-phase (phase-splitting). An example of biological phase-splitting is the frequency doubling of the circadian locomotor rhythm in hamsters housed in constant light, in which the pacemaker in the suprachiasmatic nucleus (SCN) is reconfigured with its left and right halves oscillating in anti-phase. We apply the theory of coupled phase oscillators to show that stable phase-splitting requires the presence of negative coupling terms, through delayed and/or inhibitory interactions. We also find that the inclusion of real biological constraints (that the SCN contains a finite number of non-identical noisy oscillators) implies the existence of an underlying non-uniform network architecture, in which the population of oscillators must interact through at least two types of connections. We propose that a key design principle for the frequency doubling of a population of biological oscillators is inhomogeneity of oscillator coupling.
    Source

    J R Soc Interface. 2008 Aug 6;5(25):873-83. Link to article on publisher's site

    DOI
    10.1098/rsif.2007.1248
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/39136
    PubMed ID
    18077247
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1098/rsif.2007.1248
    Scopus Count
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.