We are upgrading the repository! The content freeze has been extended to December 11, 2024, when we expect the new repository to become available. New submissions or changes to existing items will not be allowed until after the new website goes live. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection
Authors
Renzette, NicholasGibson, Laura L
Bhattacharjee, Bornali
Fisher, Donna
Schleiss, Mark R.
Jensen, Jeffrey D.
Kowalik, Timothy F.
UMass Chan Affiliations
Department of PediatricsDepartment of Medicine, Division of Infectious Diseases and Immunology
Department of Microbiology and Physiological Systems
Document Type
Journal ArticlePublication Date
2013-09-26
Metadata
Show full item recordAbstract
Populations of human cytomegalovirus (HCMV), a large DNA virus, are highly polymorphic in patient samples, which may allow for rapid evolution within human hosts. To understand HCMV evolution, longitudinally sampled genomic populations from the urine and plasma of 5 infants with symptomatic congenital HCMV infection were analyzed. Temporal and compartmental variability of viral populations were quantified using high throughput sequencing and population genetics approaches. HCMV populations were generally stable over time, with ~88% of SNPs displaying similar frequencies. However, samples collected from plasma and urine of the same patient at the same time were highly differentiated with approximately 1700 consensus sequence SNPs (1.2% of the genome) identified between compartments. This inter-compartment differentiation was comparable to the differentiation observed in unrelated hosts. Models of demography (i.e., changes in population size and structure) and positive selection were evaluated to explain the observed patterns of variation. Evidence for strong bottlenecks (>90% reduction in viral population size) was consistent among all patients. From the timing of the bottlenecks, we conclude that fetal infection occurred between 13-18 weeks gestational age in patients analyzed, while colonization of the urine compartment followed roughly 2 months later. The timing of these bottlenecks is consistent with the clinical histories of congenital HCMV infections. We next inferred that positive selection plays a small but measurable role in viral evolution within a single compartment. However, positive selection appears to be a strong and pervasive driver of evolution associated with compartmentalization, affecting >/= 34 of the 167 open reading frames (~20%) of the genome. This work offers the most detailed map of HCMV in vivo evolution to date and provides evidence that viral populations can be stable or rapidly differentiate, depending on host environment. The application of population genetic methods to these data provides clinically useful information, such as the timing of infection and compartment colonization.Source
Renzette N, Gibson L, Bhattacharjee B, Fisher D, Schleiss MR, et al. (2013) Rapid Intrahost Evolution of Human Cytomegalovirus Is Shaped by Demography and Positive Selection. PLoS Genet 9(9): e1003735. doi:10.1371/journal.pgen.1003735 Link to article on publisher's siteDOI
10.1371/journal.pgen.1003735Permanent Link to this Item
http://hdl.handle.net/20.500.14038/39619PubMed ID
24086142Related Resources
Link to Article in PubMedRights
Copyright 2013 Renzette et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ae974a485f413a2113503eed53cd6c53
10.1371/journal.pgen.1003735