Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis
Authors
Markert, Matthew J.Zhang, Ying
Enuameh, Metewo Selase
Reppert, Steven M.
Wolfe, Scot A.
Merlin, Christine
Document Type
Journal ArticlePublication Date
2016-04-07Keywords
CRISPRTALENs
clock genes
germline targeting
insect
Computational Biology
Genetics
Genomics
Molecular Genetics
Neuroscience and Neurobiology
Metadata
Show full item recordAbstract
The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins.Source
G3 (Bethesda). 2016 Apr 7;6(4):905-15. doi: 10.1534/g3.116.027029. Link to article on publisher's site
DOI
10.1534/g3.116.027029Permanent Link to this Item
http://hdl.handle.net/20.500.14038/39945PubMed ID
26837953Related Resources
Rights
Copyright © 2016 Markert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1534/g3.116.027029
Scopus Count
Except where otherwise noted, this item's license is described as Copyright © 2016 Markert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.