Single molecule analysis reveals reversible and irreversible steps during spliceosome activation
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyDocument Type
Journal ArticlePublication Date
2016-05-31Keywords
RNAS. cerevisiae
biochemistry
biophysics
fluorescence
single-molecule
snRNP
spliceosome
splicing
structural biology
Biochemistry
Biophysics
Structural Biology
Metadata
Show full item recordAbstract
The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation.Source
Elife. 2016 May 31;5. pii: e14166. doi: 10.7554/eLife.14166. Link to article on publisher's site
DOI
10.7554/eLife.14166Permanent Link to this Item
http://hdl.handle.net/20.500.14038/40024PubMed ID
27244240Related Resources
Rights
Copyright © 2016, Hoskins et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.7554/eLife.14166
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2016, Hoskins et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.