Show simple item record

dc.contributor.authorZhao, Zhiyong
dc.contributor.authorHuang, Tianming
dc.contributor.authorTang, Chaozheng
dc.contributor.authorNi, Kaiji
dc.contributor.authorPan, Xiandi
dc.contributor.authorYan, Chao
dc.contributor.authorFan, Xiaoduo
dc.contributor.authorXu, Dongrong
dc.contributor.authorLuo, Yanli
dc.date2022-08-11T08:09:46.000
dc.date.accessioned2022-08-23T16:43:13Z
dc.date.available2022-08-23T16:43:13Z
dc.date.issued2017-04-28
dc.date.submitted2017-06-01
dc.identifier.citationPLoS One. 2017 Apr 28;12(4):e0176494. eCollection 2017. <a href="https://doi.org/10.1371/journal.pone.0176494">Link to article on publisher's site</a>
dc.identifier.issn1932-6203 (Linking)
dc.identifier.doi10.1371/journal.pone.0176494
dc.identifier.pmid28453543
dc.identifier.urihttp://hdl.handle.net/20.500.14038/40249
dc.description.abstractPatients with persistent somatoform pain disorder (PSPD) usually experience various functional impairments in pain, emotion, and cognition, which cannot be fully explained by a physiological process or a physical disorder. However, it is still not clear for the mechanism underlying the pathogenesis of PSPD. The present study aimed to explore the intra- and inter-network functional connectivity (FC) differences between PSPD patients and healthy controls (HCs). Functional magnetic resonance imaging (fMRI) was performed in 13 PSPD patients and 23 age- and gender-matched HCs. We used independent component analysis on resting-state fMRI data to calculate intra- and inter-network FCs, and we used the two-sample t-test to detect the FC differences between groups. Spearman correlation analysis was employed to evaluate the correlations between FCs and clinical assessments. As compared to HCs, PSPD patients showed decreased coactivations in the right superior temporal gyrus within the anterior default-mode network and the anterior cingulate cortex within the salience network, and increased coactivations in the bilateral supplementary motor areas within the sensorimotor network and both the left posterior cingulate cortex and the medial prefrontal cortex within the anterior default-mode network. In addition, we found that the PSPD patients showed decreased FNCs between sensorimotor network and audio network as well as visual network, between default-mode network and executive control network as well as audio network and between salience network and executive control network as well as right frontoparietal network, and increased FNCs between sensorimotor network and left frontoparietal network, salience network as well as cerebellum network, which were negatively correlated with the clinical assessments in PSPD patients. Our findings suggest that PSPD patients experience large-scale reorganization at the level of the functional networks, which suggests a possible mechanism underlying the pathogenesis of PSPD.
dc.language.isoen_US
dc.relation<a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=28453543&dopt=Abstract">Link to Article in PubMed</a>
dc.rightsCopyright © 2017 Zhao et al.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectpersistent somatoform pain disorder
dc.subjectfunctionality connectivity
dc.subjectfMRI
dc.subjectMental and Social Health
dc.subjectMental Disorders
dc.subjectNeuroscience and Neurobiology
dc.subjectPsychiatry
dc.titleAltered resting-state intra- and inter- network functional connectivity in patients with persistent somatoform pain disorder
dc.typeJournal Article
dc.source.journaltitlePloS one
dc.source.volume12
dc.source.issue4
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=4047&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/3042
dc.identifier.contextkey10236367
refterms.dateFOA2022-08-23T16:43:14Z
html.description.abstract<p>Patients with persistent somatoform pain disorder (PSPD) usually experience various functional impairments in pain, emotion, and cognition, which cannot be fully explained by a physiological process or a physical disorder. However, it is still not clear for the mechanism underlying the pathogenesis of PSPD. The present study aimed to explore the intra- and inter-network functional connectivity (FC) differences between PSPD patients and healthy controls (HCs). Functional magnetic resonance imaging (fMRI) was performed in 13 PSPD patients and 23 age- and gender-matched HCs. We used independent component analysis on resting-state fMRI data to calculate intra- and inter-network FCs, and we used the two-sample t-test to detect the FC differences between groups. Spearman correlation analysis was employed to evaluate the correlations between FCs and clinical assessments. As compared to HCs, PSPD patients showed decreased coactivations in the right superior temporal gyrus within the anterior default-mode network and the anterior cingulate cortex within the salience network, and increased coactivations in the bilateral supplementary motor areas within the sensorimotor network and both the left posterior cingulate cortex and the medial prefrontal cortex within the anterior default-mode network. In addition, we found that the PSPD patients showed decreased FNCs between sensorimotor network and audio network as well as visual network, between default-mode network and executive control network as well as audio network and between salience network and executive control network as well as right frontoparietal network, and increased FNCs between sensorimotor network and left frontoparietal network, salience network as well as cerebellum network, which were negatively correlated with the clinical assessments in PSPD patients. Our findings suggest that PSPD patients experience large-scale reorganization at the level of the functional networks, which suggests a possible mechanism underlying the pathogenesis of PSPD.</p>
dc.identifier.submissionpathoapubs/3042
dc.contributor.departmentDepartment of Psychiatry
dc.source.pagese0176494


Files in this item

Thumbnail
Name:
apone.0176494.pdf
Size:
22.73Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Copyright © 2017 Zhao et al.
Except where otherwise noted, this item's license is described as Copyright © 2017 Zhao et al.