Show simple item record

dc.contributor.authorBoggiano, Cesar
dc.contributor.authorEichelberg, Katrin
dc.contributor.authorRamachandra, Lakshmi
dc.contributor.authorShea, Jaqueline
dc.contributor.authorRamakrishnan, Lalita
dc.contributor.authorBehar, Samuel M.
dc.contributor.authorErnst, Joel D.
dc.contributor.authorPorcelli, Steven A.
dc.contributor.authorMaeurer, Markus
dc.contributor.authorKornfeld, Hardy
dc.date2022-08-11T08:09:47.000
dc.date.accessioned2022-08-23T16:43:41Z
dc.date.available2022-08-23T16:43:41Z
dc.date.issued2017-06-14
dc.date.submitted2017-10-11
dc.identifier.citation<p>Vaccine. 2017 Jun 14;35(27):3433-3440. doi: 10.1016/j.vaccine.2017.04.007. Epub 2017 May 2. <a href="https://doi.org/10.1016/j.vaccine.2017.04.007">Link to article on publisher's site</a></p>
dc.identifier.issn0264-410X (Linking)
dc.identifier.doi10.1016/j.vaccine.2017.04.007
dc.identifier.pmid28476627
dc.identifier.urihttp://hdl.handle.net/20.500.14038/40347
dc.description.abstractTuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guerin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=28476627&dopt=Abstract">Link to Article in PubMed</a></p>
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718043/
dc.subjectImmune evasion
dc.subjectMycobacterium tuberculosis
dc.subjecttuberculosis
dc.subjectvaccine
dc.subjectBacterial Infections and Mycoses
dc.subjectImmunology of Infectious Disease
dc.subjectImmunoprophylaxis and Therapy
dc.subjectInfectious Disease
dc.title"The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report
dc.typeJournal Article
dc.source.journaltitleVaccine
dc.source.volume35
dc.source.issue27
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=4154&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/3146
dc.identifier.contextkey10887402
refterms.dateFOA2022-08-23T16:43:41Z
html.description.abstract<p>Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guerin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission.</p>
dc.identifier.submissionpathoapubs/3146
dc.contributor.departmentDepartment of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
dc.contributor.departmentDepartment of Microbiology and Physiological Systems
dc.source.pages3433-3440


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
1_s2.0_S1201971216312024_main.pdf
Size:
551.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record