Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli
UMass Chan Affiliations
Department of Molecular Genetics and MicrobiologyDocument Type
Journal ArticlePublication Date
2003-12-16Keywords
Bacteriophage lambdaEscherichia coli
Escherichia coli O157
Gene Deletion
Genetic Engineering
Kanamycin
Mutation
Polymerase Chain Reaction
*Recombination, Genetic
Molecular Biology
Molecular Genetics
Metadata
Show full item recordAbstract
BACKGROUND: The lambda Red recombineering technology has been used extensively in Escherichia coli and Salmonella typhimurium for easy PCR-mediated generation of deletion mutants, but less so in pathogenic species of E. coli such as EHEC and EPEC. Our early experiments with the use of lambda Red in EHEC and EPEC have led to sporadic results, leading to the present study to identify factors that might improve the efficiency of Red recombineering in these pathogenic strains of E. coli. RESULTS: In this report, we have identified conditions that optimize the use of lambda Red for recombineering in EHEC and EPEC. Using plasmids that contain a Ptac-red-gam operon and a temperature-sensitive origin of replication, we have generated multiple mutations (both marked and unmarked) in known virulence genes. In addition, we have easily deleted five O157-specific islands (O-islands) of EHEC suspected of containing virulence factors. We have examined the use of both PCR-generated substrates (40 bp of flanking homology) and plasmid-derived substrates (approximately 1 kb of flanking homology); both work well and each have their own advantages. The establishment of the hyper-rec phenotype requires only a 20 minute IPTG induction period of red and gam. This recombinogenic window is important as constitutive expression of red and gam induces a 10-fold increase in spontaneous resistance to rifampicin. Other factors such as the orientation of the drug marker in recombination substrates and heat shock effects also play roles in the success of Red-mediated recombination in EHEC and EPEC. CONCLUSIONS: The lambda Red recombineering technology has been optimized for use in pathogenic species of E. coli, namely EHEC and EPEC. As demonstration of this technology, five O-islands of EHEC were easily and precisely deleted from the chromosome by electroporation with PCR-generated substrates containing drug markers flanked with 40 bp of target DNA. These results should encourage the use of lambda Red recombineering in these and other strains of pathogenic bacteria for faster identification of virulence factors and the speedy generation of bacterial mutants for vaccine development.Source
BMC Mol Biol. 2003 Dec 13;4:11. Link to article on publisher's siteDOI
10.1186/1471-2199-4-11Permanent Link to this Item
http://hdl.handle.net/20.500.14038/40362PubMed ID
14672541Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1186/1471-2199-4-11