We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation
Authors
Allende, Maria L.Cook, Emily K.
Larman, Bridget C.
Nugent, Adrienne
Brady, Jacqueline M.
Golebiowski, Diane
Sena-Esteves, Miguel
Tifft, Cynthia J.
Proia, Richard L.
Document Type
Journal ArticlePublication Date
2018-03-01Keywords
Clustered Regularly Interspaced Short Palindromic Repeats/Cas9GM2 gangliosidosis
Tay-Sachs disease
brain development
brain lipids
gangliosides
patient-derived induced pluripotent stem cells
sphingolipids
storage diseases
Cell Biology
Cells
Congenital, Hereditary, and Neonatal Diseases and Abnormalities
Developmental Biology
Genetic Phenomena
Lipids
Nervous System Diseases
Neuroscience and Neurobiology
Nutritional and Metabolic Diseases
Metadata
Show full item recordAbstract
Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of beta-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.Source
J Lipid Res. 2018 Mar;59(3):550-563. doi: 10.1194/jlr.M081323. Epub 2018 Jan 22. Link to article on publisher's site
DOI
10.1194/jlr.M081323Permanent Link to this Item
http://hdl.handle.net/20.500.14038/40546PubMed ID
29358305Related Resources
Rights
Open Access Author’s Choice—Final version free via Creative Commons CC-BY license.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1194/jlr.M081323
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Open Access Author’s Choice—Final version free via Creative Commons CC-BY license.
Related items
Showing items related by title, author, creator and subject.
-
Role of WFS1 in Regulating Endoplasmic Reticulum Stress Signaling: A DissertationFonseca, Sonya G. (2009-02-24)The endoplasmic reticulum (ER) is a multi-functional cellular compartment that functions in protein folding, lipid biosynthesis, and calcium homeostasis. Perturbations to ER function lead to the dysregulation of ER homeostasis, causing the accumulation of unfolded and misfolded proteins in the cell. This is a state of ER stress. ER stress elicits a cytoprotective, adaptive signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can moderate stress, cells can produce the proper amount of proteins and maintain a state of homeostasis. If the UPR, however, is dysfunctional and fails to achieve this, cells will undergo apoptosis. Diabetes mellitus is a group of metabolic disorders characterized by persistent high blood glucose levels. The pathogenesis of this disease involves pancreatic β-cell dysfunction: an abnormality in the primary function of the β-cell, insulin production and secretion. Activation of the UPR is critical to pancreatic β-cell survival, where a disruption in ER stress signaling can lead to cell death and consequently diabetes. There are several models of ER stress leading to diabetes. Wolcott-Rallison syndrome, for example, occurs when there is a mutation in the gene encoding one of the master regulators of the UPR, PKR-like ER kinase (PERK). In this dissertation, we show that Wolfram Syndrome 1 (WFS1), an ER transmembrane protein, is a component of the UPR and is a downstream target of two of the master regulators of the UPR, Inositol Requiring 1 (IRE1) and PERK. WFS1 mutations lead to Wolfram syndrome, a non-autoimmune form of type 1 diabetes accompanied by optical atrophy and other neurological disorders. It has been shown that patients develop diabetes due to the selective loss of their pancreatic β-cells. Here we define the underlying molecular mechanism of β-cell loss in Wolfram syndrome, and link this cell loss to ER stress and a dysfunction in a component of the UPR, WFS1. We show that WFS1 expression is localized to the β-cell of the pancreas, it is upregulated during insulin secretion and ER stress, and its inactivation leads to chronic ER stress and apoptosis. This dissertation also reveals the previously unknown function of WFS1 in the UPR. Positive regulation of the UPR has been extensively studied, however, the precise mechanisms of negative regulation of this signaling pathway have not. Here we report that WFS1 regulates a key transcription factor of the UPR, activating transcription factor 6 (ATF6), through the ubiquitin-proteasome pathway. WFS1 expression decreases expression levels of ATF6 target genes and represses ATF6-mediated activation of the ER stress response (ERSE) promoter. WFS1 recruits and stabilizes an E3 ubiquitin ligase, HMG-CoA reductase degradation protein 1 (HRD1), on the ER membrane. The WFS1-HRD1 complex recruits ATF6 to the proteasome and enhances its ubiquitination and proteasome-mediated degradation, leading to suppression of the UPR under non-stress conditions. In response to ER stress, ATF6 is released from WFS1 and activates the UPR to mitigate ER stress. This body of work reveals a novel role for WFS1 in the UPR, and a novel mechanism for regulating ER stress signaling. These findings also indicate that hyperactivation of the UPR can lead to cellular dysfunction and death. This supports the notion that tight regulation of ER stress signaling is crucial to cell survival. This unanticipated role of WFS1 for a feedback loop of the UPR is relevant to diseases caused by chronic hyperactivation of ER stress signaling network such as pancreatic β-cell death in diabetes and neurodegeneration.
-
Progress and prospects: gene therapy clinical trials (part 1)Alexander, B. L.; Ali, R. R.; Alton, E.W.F.; Bainbridge, J. W.; Braun, S.; Cheng, S. H.; Flotte, Terence R.; Gaspar, H. B.; Grez, M.; Griesenbach, U.; et al. (2007-10-03)Over the last two decades gene therapy has moved from preclinical to clinical studies for many diseases ranging from single gene disorders such as cystic fibrosis and Duchenne muscular dystrophy, to more complex diseases such as cancer and cardiovascular disorders. Gene therapy for severe combined immunodeficiency (SCID) is the most significant success story to date, but progress in many other areas has been significant. We asked 20 leaders in the field succinctly to summarize and comment on clinical gene therapy research in their respective areas of expertise and these are published in two parts in the Progress and Prospect series.
-
Gaucher disease in the COVID-19 pandemic environment: The good, the bad and the unknownGinns, Edward I.; Ryan, Emory; Sidransky, Ellen (2021-04-01)Early in the course of the novel coronavirus disease 2019 (COVID-19) pandemic, the rare disease community anticipated that patients with lysosomal and other metabolic disorders would be at increased risk for poor disease outcomes and mortality from the SARS-CoV-2 virus.