Document Type
Journal ArticlePublication Date
2018-04-20Keywords
Chemical probesOpen Science
Target validation
biochemistry
chemical biology
Amino Acids, Peptides, and Proteins
Biochemistry
Chemical and Pharmacologic Phenomena
Chemicals and Drugs
Medicinal-Pharmaceutical Chemistry
Metadata
Show full item recordAbstract
Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.Source
Elife. 2018 Apr 20;7. pii: 34311. doi: 10.7554/eLife.34311. Link to article on publisher's site
DOI
10.7554/eLife.34311Permanent Link to this Item
http://hdl.handle.net/20.500.14038/40639PubMed ID
29676732Notes
Full author list omitted for brevity. For the full list of authors, see article.
Related Resources
Rights
Copyright 2018 Muller et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.7554/eLife.34311
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright 2018 Muller et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Related items
Showing items related by title, author, creator and subject.
-
Role of Disulfide Bond Rearrangement in Newcastle Disease Virus Entry: A DissertationJain, Surbhi (2008-06-26)Newcastle disease virus (NDV), an avian paramyxovirus, enters the host cell by fusion of viral and host cell membranes. The fusion of two membranes is mediated by the viral fusion (F) protein. The F protein, like other class I fusion proteins, is thought to undergo major conformational changes during the fusion process. The exact mechanism that leads to major refolding of F protein is not clear. Recently, it has been proposed that disulfide bond reduction in the fusion protein of some viruses may be involved in the conformational changes in fusion proteins. In some viruses, the reduction of disulfide bonds in the fusion protein is mediated by host cell disulfide isomerases belonging to the protein disulfide isomerase (PDI) family. In this study, the role of disulfide bond isomerization in the entry of NDV was analyzed. Using inhibitors of thiol-disulfide isomerases, we found that blocking the reduction of disulfide bonds in the fusion protein inhibited cell-cell fusion as well as virus entry into the host cell. Also, over-expression of isomerases belonging to the PDI family significantly enhanced cell-cell fusion. Taken together, these results suggest that free thiols play an important role in fusion mediated by NDV glycoproteins. Using a thiol specific, membrane impermeable biotin, MPB, we found that free thiols are produced in cell surface-expressed NDV F protein. The production of free thiols was inhibited by inhibitors of thiol-disulfide isomerases. Over-expression of isomerases belonging to the PDI family enhanced detection of free thiols in F protein. In F protein, present in virions or in virus-like particles, free thiols were detected only after the particles were attached to target cells. Taken together, these results suggest that free thiols are produced in F protein and the production of free thiols is mediated by host cell thiol-disulfide isomerases. Using conformation sensitive antibodies, we also studied the conformation of cell surface-expressed F protein in the presence ofthiol-disulfide isomerase inhibitors or in cells over-expressing thiol-disulfide isomerases. In the presence of thiol-disulfide isomerase inhibitors, the cell surface-expressed F protein was in a prefusion conformation while in cells over-expressing thiol-disulfide isomerases the F protein was in a post-fusion conformation. We also correlated the production of free thiols to the conformational changes in F protein. Using temperature-arrested intermediates or F protein with mutations in heptad repeat domains, which are defective in attaining intermediate conformations, we found that free thiols are produced before any of the proposed conformational changes in F protein. Also, the production of free thiols in F protein was found to be independent of its activation by hemagglutinin-neuraminidase (HN) protein. These results suggest that free thiols are probably required for the activation of F protein during membrane fusion.
-
Growth hormone and dexamethasone stimulate lipolysis and activate adenylyl cyclase in rat adipocytes by selectively shifting Gi alpha2 to lower density membrane fractionsYip, Rupert Guk-Chor; Goodman, H. Maurice (1999-03-06)GH, in the presence of glucocorticoid, produces a delayed increase in lipolysis in rat adipose tissue, but the biochemical mechanisms that account for this action have not been established. Other lipolytic agents rapidly activate adenylyl cyclase (AC) and the resulting production of cAMP initiates a chain of reactions that culminates in the activation of hormone-sensitive lipase. We compared responses of segments of rat epididymal fat or isolated adipocytes to 30 ng/ml GH and 0.1 microg/ml dexamethasone (Dex) with 0.1 ng/ml isoproterenol (ISO), which evoked a similar increase in lipolysis. All measurements were made during the fourth hour after the addition of GH+Dex or immediately after the addition of ISO to cells or tissues that had been preincubated for 3 h without hormone. Although no significant increases in cAMP were discernible in homogenates of GH+Dex-treated tissues, Rp-cAMPS (Rp-adenosine 3'5'-phosphothioate), a competitive inhibitor of cAMP, was equally effective in decreasing lipolysis induced by GH+Dex or ISO. The proportion of PKA that was present in the active form was determined by measuring the incorporation of 32P from [gamma-32P]ATP into kemptide in the absence and presence of saturating amounts of cAMP. GH+Dex and ISO produced similar increases in protein kinase A activity in tissue extracts. Treatment with GH+Dex did not change the total forskolin-stimulated AC present in either a crude membrane pellet sedimented at 16K x g or a less dense membrane pellet sedimented at 100K x g, but doubled the AC activity in the 16K pellet when assayed in the absence of forskolin. To evaluate possible effects on G proteins, pellets obtained from centrifugation of adipocyte homogenates at 16K x g and 100K x g were solubilized and subjected to PAGE and Western analysis. GH+Dex decreased Gi alpha2 by 44% (P < 0.02) in the 16K pellets and increased it by 52% (P < 0.01) in the 100K pellets. Gs alpha in the 16K pellet was unaffected by GH+Dex and was decreased (P < 0.05) in the 100K pellet. Sucrose density fractionation of the 16K pellets revealed a similar GH+Dex-dependent shift of Gi alpha2 to less dense fractions as determined by both Western analysis and [32P]NAD ribosylation catalyzed by pertussis toxin. No such changes were seen in the distribution of Gs alpha or 5'-nucleotidase. Colchicine (100 microM) blocked the GH+Dex-dependent shift of Gi alpha2 from the 16K to the 100K pellet and blocked the lipolytic effects of GH+Dex, but not those of ISO. We conclude that by modifying the relationship between AC and Gi alpha2, GH+Dex relieves some inhibition of cAMP production and consequently increases lipolysis.
-
Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligandJohnson, Eric A.; Rice, Selena L.; Preimesberger, Matthew R.; Nye, Dillon B.; Gilevicius, Lukas; Wenke, Belinda B.; Brown, Jason; Witman, George B.; Lecomte, Juliette T. J. (2014-07-22)The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(*)) in either the ferric or ferrous state and has efficient NO(*) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.