Show simple item record

dc.contributor.authorLingeman, Jesse M.
dc.contributor.authorWang, Priscilla
dc.contributor.authorBecker, William
dc.contributor.authorYu, Hong
dc.date2022-08-11T08:09:50.000
dc.date.accessioned2022-08-23T16:45:15Z
dc.date.available2022-08-23T16:45:15Z
dc.date.issued2018-04-16
dc.date.submitted2018-06-20
dc.identifier.citation<p>AMIA Annu Symp Proc. 2018 Apr 16;2017:1179-1185. eCollection 2017.</p>
dc.identifier.issn1559-4076 (Linking)
dc.identifier.pmid29854186
dc.identifier.urihttp://hdl.handle.net/20.500.14038/40646
dc.description.abstractThe United States is in the midst of a prescription opioid epidemic, with the number of yearly opioid-related overdose deaths increasing almost fourfold since 2000(1). To more effectively prevent unintentional opioid overdoses, the medical profession requires robust surveillance tools that can effectively identify at-risk patients. Drug-related aberrant behaviors observed in the clinical context may be important indicators of patients at risk for or actively abusing opioids. In this paper, we describe a natural language processing (NLP) method for automatic surveillance of aberrant behavior in medical notes relying only on the text of the notes. This allows for a robust and generalizable system that can be used for high volume analysis of electronic medical records for potential predictors of opioid abuse.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=29854186&dopt=Abstract">Link to Article in PubMed</a></p>
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977697/
dc.rightsCopyright ©2017 AMIA - All rights reserved. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose.
dc.subjectArtificial Intelligence and Robotics
dc.subjectBehavior and Behavior Mechanisms
dc.subjectHealth Information Technology
dc.subjectHealth Services Research
dc.subjectLibrary and Information Science
dc.subjectSubstance Abuse and Addiction
dc.titleDetecting Opioid-Related Aberrant Behavior using Natural Language Processing
dc.typeConference Paper
dc.source.volume2017
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=4460&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/3449
dc.identifier.contextkey12344365
refterms.dateFOA2022-08-23T16:45:15Z
html.description.abstract<p>The United States is in the midst of a prescription opioid epidemic, with the number of yearly opioid-related overdose deaths increasing almost fourfold since 2000(1). To more effectively prevent unintentional opioid overdoses, the medical profession requires robust surveillance tools that can effectively identify at-risk patients. Drug-related aberrant behaviors observed in the clinical context may be important indicators of patients at risk for or actively abusing opioids. In this paper, we describe a natural language processing (NLP) method for automatic surveillance of aberrant behavior in medical notes relying only on the text of the notes. This allows for a robust and generalizable system that can be used for high volume analysis of electronic medical records for potential predictors of opioid abuse.</p>
dc.identifier.submissionpathoapubs/3449
dc.contributor.departmentDepartment of Quantitative Health Sciences
dc.source.pages1179-1185


Files in this item

Thumbnail
Name:
2731962.pdf
Size:
150.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record