Modulating Viscoelasticity, Stiffness, and Degradation of Synthetic Cellular Niches via Stoichiometric Tuning of Covalent versus Dynamic Noncovalent Cross-Linking
UMass Chan Affiliations
Department of Orthopedics and Physical RehabilitationDocument Type
Journal ArticlePublication Date
2018-08-22Keywords
Biochemistry, Biophysics, and Structural BiologyCell Biology
Cells
Medicinal-Pharmaceutical Chemistry
Molecular, Cellular, and Tissue Engineering
Metadata
Show full item recordAbstract
Viscoelasticity, stiffness, and degradation of tissue matrices regulate cell behavior, yet predictive synergistic tuning of these properties in synthetic cellular niches remains elusive. We hypothesize that reversible physical cross-linking can be quantitatively introduced to synthetic hydrogels to accelerate stress relaxation and enhance network stiffness, while strategic placement of isolated labile linkages near cross-linking sites can predict hydrogel degradation, both of which are essential for creating adaptive cellular niches. To test these hypotheses, chondrocytes were encapsulated in hydrogels formed by biorthogonal covalent and noncovalent physical cross-linking of a pair of hydrophilic building blocks. The stiffer and more viscoelastic hydrogels with DBCO-DBCO physical cross-links facilitated proliferation and chondrogenic ECM deposition of encapsulated cells by dissipating stress imposed by expanding cell mass/ECM via dynamic disruption/reformation of physical cross-links. Degradation of labile linkages near covalent cross-linkers further facilitated cell proliferation and timed cell release while maintaining chondrogenic phenotype. This work presents new chemical tools for engineering permissive synthetic niches for cell encapsulation, 3D expansion, and release.Source
ACS Cent Sci. 2018 Aug 22;4(8):971-981. doi: 10.1021/acscentsci.8b00170. Epub 2018 Jul 20. Link to article on publisher's site
DOI
10.1021/acscentsci.8b00170Permanent Link to this Item
http://hdl.handle.net/20.500.14038/40742PubMed ID
30159394Related Resources
Rights
Copyright © 2018 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.ae974a485f413a2113503eed53cd6c53
10.1021/acscentsci.8b00170