Show simple item record

dc.contributor.authorYan, Connie
dc.contributor.authorWang, Fei
dc.contributor.authorXiang, Yang
dc.contributor.authorRogers, Stephen L.
dc.contributor.authorParrish, Jay Z.
dc.date2022-08-11T08:09:51.000
dc.date.accessioned2022-08-23T16:46:16Z
dc.date.available2022-08-23T16:46:16Z
dc.date.issued2018-10-23
dc.date.submitted2018-12-12
dc.identifier.citation<p>Cell Rep. 2018 Oct 23;25(4):1051-1065.e6. doi: 10.1016/j.celrep.2018.09.075. <a href="https://doi.org/10.1016/j.celrep.2018.09.075">Link to article on publisher's site</a></p>
dc.identifier.issn2211-1247 (Electronic)
dc.identifier.doi10.1016/j.celrep.2018.09.075
dc.identifier.pmid30355484
dc.identifier.urihttp://hdl.handle.net/20.500.14038/40846
dc.description<p>Full author list omitted for brevity. For the full list of authors, see article.</p>
dc.description.abstractAt the cellular level, alpha-tubulin acetylation alters the structure of microtubules to render them mechanically resistant to compressive forces. How this biochemical property of microtubule acetylation relates to mechanosensation remains unknown, although prior studies have shown that microtubule acetylation influences touch perception. Here, we identify the major Drosophila alpha-tubulin acetylase (dTAT) and show that it plays key roles in several forms of mechanosensation. dTAT is highly expressed in the larval peripheral nervous system (PNS), but it is largely dispensable for neuronal morphogenesis. Mutation of the acetylase gene or the K40 acetylation site in alpha-tubulin impairs mechanical sensitivity in sensory neurons and behavioral responses to gentle touch, harsh touch, gravity, and vibration stimuli, but not noxious thermal stimulus. Finally, we show that dTAT is required for mechanically induced activation of NOMPC, a microtubule-associated transient receptor potential channel, and functions to maintain integrity of the microtubule cytoskeleton in response to mechanical stimulation.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=30355484&dopt=Abstract">Link to Article in PubMed</a></p>
dc.rightsUnder a Creative Commons license: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDrosophila
dc.subjectTRP channel
dc.subjectmechanosensation
dc.subjectmicrotubule acetylation
dc.subjectsomatosensory neuron
dc.subjectBiochemical Phenomena, Metabolism, and Nutrition
dc.subjectCells
dc.subjectGenetic Phenomena
dc.subjectNeuroscience and Neurobiology
dc.titleMicrotubule Acetylation Is Required for Mechanosensation in Drosophila
dc.typeJournal Article
dc.source.journaltitleCell reports
dc.source.volume25
dc.source.issue4
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=4664&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/3652
dc.identifier.contextkey13473105
refterms.dateFOA2022-08-23T16:46:16Z
html.description.abstract<p>At the cellular level, alpha-tubulin acetylation alters the structure of microtubules to render them mechanically resistant to compressive forces. How this biochemical property of microtubule acetylation relates to mechanosensation remains unknown, although prior studies have shown that microtubule acetylation influences touch perception. Here, we identify the major Drosophila alpha-tubulin acetylase (dTAT) and show that it plays key roles in several forms of mechanosensation. dTAT is highly expressed in the larval peripheral nervous system (PNS), but it is largely dispensable for neuronal morphogenesis. Mutation of the acetylase gene or the K40 acetylation site in alpha-tubulin impairs mechanical sensitivity in sensory neurons and behavioral responses to gentle touch, harsh touch, gravity, and vibration stimuli, but not noxious thermal stimulus. Finally, we show that dTAT is required for mechanically induced activation of NOMPC, a microtubule-associated transient receptor potential channel, and functions to maintain integrity of the microtubule cytoskeleton in response to mechanical stimulation.</p>
dc.identifier.submissionpathoapubs/3652
dc.contributor.departmentGraduate School of Biomedical Sciences, Neuroscience Program
dc.contributor.departmentYang Xiang Lab
dc.contributor.departmentNeurobiology
dc.source.pages1051-1065.e6
dc.contributor.studentFei Wang
dc.description.thesisprogramNeuroscience


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
1_s2.0_S2211124718315353_main.pdf
Size:
8.195Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Under a Creative Commons license: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as Under a Creative Commons license: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)