Single-Stranded Phosphorothioated Regions Enhance Cellular Uptake of Cholesterol-Conjugated siRNA but Not Silencing Efficacy
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
RNA Therapeutics InstituteDocument Type
Journal ArticlePublication Date
2020-09-04Keywords
chemically modified siRNAscholesterol conjugated siRNAs
phosphorothioate
siRNA trafficking
siRNAs
Biochemistry, Biophysics, and Structural Biology
Cells
Nucleic Acids, Nucleotides, and Nucleosides
Metadata
Show full item recordAbstract
Small interfering RNAs (siRNAs) have potential to silence virtually any disease-causing gene but require chemical modifications for delivery to the tissue and cell of interest. Previously, we demonstrated that asymmetric, phosphorothioate (PS)-modified, chemically stabilized, cholesterol-conjugated siRNAs, called hsiRNAs, support rapid cellular uptake and efficient mRNA silencing both in cultured cells and in vivo. Here, we systematically evaluated the impact of number, structure, and sequence context of PS-modified backbones on cellular uptake and RNAi-mediated silencing efficacy. We find that PS enhances cellular internalization in a sequence-dependent manner but only when present in a single-stranded but not double-stranded region. Furthermore, the observed increase in cellular internalization did not correlate with functional silencing improvement, indicating that PS-mediated uptake may drive compounds to non-productive sinks. Thus, the primary contributing factor of PS modifications to functional efficacy is likely stabilization rather than enhanced cellular uptake. A better understanding of the relative impact of different chemistries on productive versus non-productive uptake will assist in improved design of therapeutic RNAs.Source
Ly S, Echeverria D, Sousa J, Khvorova A. Single-Stranded Phosphorothioated Regions Enhance Cellular Uptake of Cholesterol-Conjugated siRNA but Not Silencing Efficacy. Mol Ther Nucleic Acids. 2020 Sep 4;21:991-1005. doi: 10.1016/j.omtn.2020.07.029. Epub 2020 Jul 25. PMID: 32818923; PMCID: PMC7452107. Link to article on publisher's site
DOI
10.1016/j.omtn.2020.07.029Permanent Link to this Item
http://hdl.handle.net/20.500.14038/41579PubMed ID
32818923Related Resources
Rights
Copyright 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1016/j.omtn.2020.07.029
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Related items
Showing items related by title, author, creator and subject.
-
PFRED: A computational platform for siRNA and antisense oligonucleotides design [preprint]Sciabola, Simone; Xi, Hualin; Cruz, Dario; Cao, Qing; Lawrence, Christine; Zhang, Tianhong; Rotstein, Sergio; Hughes, Jason D.; Caffrey, Daniel R.; Stanton, Robert (2020-08-25)PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred.
-
A CNS-Active siRNA Chemical Scaffold for the Treatment of Neurodegenerative DiseasesAlterman, Julia F. (2019-05-13)Small interfering RNAs (siRNAs) are a promising class of drugs for treating genetically-defined diseases. Therapeutic siRNAs enable specific modulation of gene expression, but require chemical architecture that facilitates efficient in vivodelivery. siRNAs are informational drugs, therefore specificity for a target gene is defined by nucleotide sequence. Thus, developing a chemical scaffold that efficiently delivers siRNA to a particular tissue provides an opportunity to target any disease-associated gene in that tissue. The goal of this project was to develop a chemical scaffold that supports efficient siRNA delivery to the brain for the treatment of neurodegenerative diseases, specifically Huntington’s disease (HD). HD is an autosomal dominant neurodegenerative disorder that affects 3 out of every 100,000 people worldwide. This disorder is caused by an expansion of CAG repeats in the huntingtin gene that results in significant atrophy in the striatum and cortex of the brain. Silencing of the huntingtin gene is considered a viable treatment option for HD. This project: 1) identified a hyper-functional sequence for siRNA targeting the huntingtin gene, 2) developed a fully chemically modified architecture for the siRNA sequence, and 3) identified a new structure for siRNA central nervous system (CNS) delivery—Divalent-siRNA (Di-siRNA). Di-siRNAs, which are composed of two fully chemically-stabilized, phosphorothioate-containing siRNAs connected by a linker, support potent and sustained gene modulation in the CNS of mice and non-human primates. In mice, Di-siRNAs induced potent silencing of huntingtin mRNA and protein throughout the brain one month after a single intracerebroventricular injection. Silencing persisted for at least six months, with the degree of gene silencing correlating to guide strand tissue accumulation levels. In Cynomolgus macaques, a bolus injection exhibited significant distribution and robust silencing throughout the brain and spinal cord without detectable toxicity. This new siRNA scaffold opens the CNS for RNAi-based gene modulation, creating a path towards developing treatments for genetically-defined neurological disorders.
-
Modulating ApoE with Tissue Specific siRNAs in Alzheimer’s DiseaseFerguson, Chantal M. (2021-03-31)Among many putative genetic risk variations reported to date, the ApoE4 allele remains the most common genetic risk factor for late-onset AD, and is associated with both an increase in incidence and a decrease in age of clinical onset. The majority of ApoE is produced in the: 1) central nervous system (CNS) by astrocytes to transport lipids between cells and modulate the inflammatory response; and 2) liver, where it facilitates lipid uptake into peripheral tissues via low-density lipoprotein (LDL) receptors. Consistent with its dual roles, genetic knockout of ApoE increases the risk for atherosclerosis, but it also dramatically improves AD phenotypes in mouse models. Antisense oligonucleotide (ASO) based modulation of CNS ApoE has only marginal effects on AD phenotypes, suggesting that post-embryonic silencing of ApoE is not a viable therapeutic strategy. However, the recent development of novel CNS siRNA chemical structures enables widespread distribution and potent target silencing throughout the brain. Using this technology, we demonstrate that liver and brain ApoE pools are spatially and functionally distinct, and that complete silencing of brain, not liver, ApoE results in robust reduction of amyloid plaque formation, without impacting systemic cholesterol. Furthermore, RNAseq analysis shows minimal off target effects of the siRNAs and identifies immune modulation and metabolic alterations as potential mechanisms behind ApoE’s role in plaque formation and clearance. Moving forward, these results build upon the rationale to modulate ApoE expression and provide the technology necessary to further evaluate the impact ApoE silencing in AD and other neurodegenerative diseases