Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MYD88 signaling axis
UMass Chan Affiliations
Department of Molecular, Cell and Cancer BiologyDocument Type
Journal ArticlePublication Date
2020-12-11Keywords
acute lung injuryfucoxanthin
LPS
TLR4
MyD88
NF-κB
Cell Biology
Cellular and Molecular Physiology
Molecular Biology
Respiratory Tract Diseases
Metadata
Show full item recordAbstract
Acute lung injury (ALI) is a critical clinical condition with a high mortality rate. It is believed that the inflammatory storm is a critical contributor to the occurrence of ALI. Fucoxanthin is a natural extract from marine seaweed with remarkable biological properties, including antioxidant, anti-tumor, and anti-obesity. However, the anti-inflammatory activity of Fucoxanthin has not been extensively studied. The current study aimed to elucidate the effects and the molecular mechanism of Fucoxanthin on lipopolysaccharide-induced acute lung injury. In this study, Fucoxanthin efficiently reduced the mRNA expression of pro-inflammatory factors, including IL-10, IL-6, iNOS, and Cox-2, and down-regulated the NF-kappaB signaling pathway in Raw264.7 macrophages. Furthermore, based on the network pharmacological analysis, our results showed that anti-inflammation signaling pathways were screened as fundamental action mechanisms of Fucoxanthin on ALI. Fucoxanthin also significantly ameliorated the inflammatory responses in LPS-induced ALI mice. Interestingly, our results revealed that Fucoxanthin prevented the expression of TLR4/MyD88 in Raw264.7 macrophages. We further validated Fucoxanthin binds to the TLR4 pocket using molecular docking simulations. Altogether, these results suggest that Fucoxanthin suppresses the TLR4/MyD88 signaling axis by targeting TLR4, which inhibits LPS-induced ALI, and fucoxanthin inhibition may provide a novel strategy for controlling the initiation and progression of ALI.Source
Li X, Huang R, Liu K, Li M, Luo H, Cui L, Huang L, Luo L. Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MYD88 signaling axis. Aging (Albany NY). 2020 Dec 11;13(2):2655-2667. doi: 10.18632/aging.202309. Epub ahead of print. PMID: 33323555. Link to article on publisher's site
DOI
10.18632/aging.202309Permanent Link to this Item
http://hdl.handle.net/20.500.14038/41696PubMed ID
33323555Related Resources
Rights
Copyright: © 2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Distribution License
http://creativecommons.org/licenses/by/3.0/ae974a485f413a2113503eed53cd6c53
10.18632/aging.202309
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright: © 2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.