Knowledge-based planning in robotic intracranial stereotactic radiosurgery treatments
Authors
Yu, SuhongXu, Huijun
Zhang, Yin
Zhang, Xin
Dyer, Michael A.
Hirsch, Ariel E.
Tam Truong, Minh
Zhen, Heming
UMass Chan Affiliations
Department of Radiation OncologyDocument Type
Journal ArticlePublication Date
2021-03-01Keywords
Cyberknifeknowledge-based planning
stereotactic radiosurgery
stereotactic radiotherapy
Artificial Intelligence and Robotics
Physics
Radiation Medicine
Metadata
Show full item recordAbstract
PURPOSE: To develop a knowledge-based planning (KBP) model that predicts dosimetric indices and facilitates planning in CyberKnife intracranial stereotactic radiosurgery/radiotherapy (SRS/SRT). METHODS: Forty CyberKnife SRS/SRT plans were retrospectively used to build a linear KBP model which correlated the equivalent radius of the PTV (req_PTV ) and the equivalent radius of volume that receives a set of prescription dose (req_Vi , where Vi = V10% , V20% ... V120% ). To evaluate the model's predictability, a fourfold cross-validation was performed for dosimetric indices such as gradient measure (GM) and brain V50% . The accuracy of the prediction was quantified by the mean and the standard deviation of the difference between planned and predicted values, (i.e., DeltaGM = GMpred - GMclin and fractional DeltaV50% = (V50%pred - V50%clin )/V50%clin ) and a coefficient of determination, R(2) . Then, the KBP model was incorporated into the planning for another 22 clinical cases. The training plans and the KBP test plans were compared in terms of the new conformity index (nCI) as well as the planning efficiency. RESULTS: Our KBP model showed desirable predictability. For the 40 training plans, the average prediction error from cross-validation was only 0.36 +/- 0.06 mm for DeltaGM, and 0.12 +/- 0.08 for DeltaV50% . The R(2) for the linear fit between req_PTV and req_vi was 0.985 +/- 0.019 for isodose volumes ranging from V10% to V120% ; particularly, R(2) = 0.995 for V50% and R(2) = 0.997 for V100% . Compared to the training plans, our KBP test plan nCI was improved from 1.31 +/- 0.15 to 1.15 +/- 0.08 (P < 0.0001). The efficient automatic generation of the optimization constraints by using our model requested no or little planner's intervention. CONCLUSION: We demonstrated a linear KBP based on PTV volumes that accurately predicts CyberKnife SRS/SRT planning dosimetric indices and greatly helps achieve superior plan quality and planning efficiency.Source
Yu S, Xu H, Zhang Y, Zhang X, Dyer MA, Hirsch AE, Tam Truong M, Zhen H. Knowledge-based planning in robotic intracranial stereotactic radiosurgery treatments. J Appl Clin Med Phys. 2021 Mar;22(3):48-54. doi: 10.1002/acm2.13173. Epub 2021 Feb 9. PMID: 33560592; PMCID: PMC7984472. Link to article on publisher's site
DOI
10.1002/acm2.13173Permanent Link to this Item
http://hdl.handle.net/20.500.14038/41802PubMed ID
33560592Related Resources
Rights
Copyright © 2021 The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1002/acm2.13173
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2021 The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.