We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.

Show simple item record

dc.contributor.authorSaha, Krishanu
dc.contributor.authorSontheimer, Erik J.
dc.contributor.authorGao, Guangping
dc.contributor.authorKhvorova, Anastasia
dc.contributor.authorWatts, Jonathan K
dc.contributor.authorWolfe, Scot A.
dc.date2022-08-11T08:10:00.000
dc.date.accessioned2022-08-23T16:51:38Z
dc.date.available2022-08-23T16:51:38Z
dc.date.issued2021-04-07
dc.date.submitted2021-08-10
dc.identifier.citation<p>Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB Jr, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J; SCGE Consortium. The NIH Somatic Cell Genome Editing program. Nature. 2021 Apr;592(7853):195-204. doi: 10.1038/s41586-021-03191-1. Epub 2021 Apr 7. PMID: 33828315; PMCID: PMC8026397. <a href="https://doi.org/10.1038/s41586-021-03191-1">Link to article on publisher's site</a></p>
dc.identifier.issn0028-0836 (Linking)
dc.identifier.doi10.1038/s41586-021-03191-1
dc.identifier.pmid33828315
dc.identifier.urihttp://hdl.handle.net/20.500.14038/41896
dc.description<p>Full author list omitted for brevity. For the full list of authors, see article.</p>
dc.description.abstractThe move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=33828315&dopt=Abstract">Link to Article in PubMed</a></p>
dc.rightsCopyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTargeted gene repair
dc.subjectGenetics research
dc.subjectComputational Biology
dc.subjectGenetics
dc.subjectGenomics
dc.subjectMolecular Genetics
dc.subjectTherapeutics
dc.titleThe NIH Somatic Cell Genome Editing program
dc.typeJournal Article
dc.source.journaltitleNature
dc.source.volume592
dc.source.issue7853
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=5735&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/4702
dc.identifier.contextkey24268466
refterms.dateFOA2022-08-23T16:51:38Z
html.description.abstract<p>The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.</p>
dc.identifier.submissionpathoapubs/4702
dc.contributor.departmentDepartment of Molecular, Cell and Cancer Biology
dc.contributor.departmentHorae Gene Therapy Center
dc.contributor.departmentRNA Therapeutics Institute
dc.source.pages195-204


Files in this item

Thumbnail
Name:
s41586_021_03191_1.pdf
Size:
2.349Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.