Show simple item record

dc.contributor.authorKour, Sukhleen
dc.contributor.authorLanders, John E
dc.contributor.authorPandey, Udai Bhan
dc.date2022-08-11T08:10:00.000
dc.date.accessioned2022-08-23T16:51:55Z
dc.date.available2022-08-23T16:51:55Z
dc.date.issued2021-05-07
dc.date.submitted2021-10-04
dc.identifier.citation<p>Kour S, Rajan DS, Fortuna TR, Anderson EN, Ward C, Lee Y, Lee S, Shin YB, Chae JH, Choi M, Siquier K, Cantagrel V, Amiel J, Stolerman ES, Barnett SS, Cousin MA, Castro D, McDonald K, Kirmse B, Nemeth AH, Rajasundaram D, Innes AM, Lynch D, Frosk P, Collins A, Gibbons M, Yang M, Desguerre I, Boddaert N, Gitiaux C, Rydning SL, Selmer KK, Urreizti R, Garcia-Oguiza A, Osorio AN, Verdura E, Pujol A, McCurry HR, Landers JE, Agnihotri S, Andriescu EC, Moody SB, Phornphutkul C, Sacoto MJG, Begtrup A, Houlden H, Kirschner J, Schorling D, Rudnik-Schöneborn S, Strom TM, Leiz S, Juliette K, Richardson R, Yang Y, Zhang Y, Wang M, Wang J, Wang X, Platzer K, Donkervoort S, Bönnemann CG, Wagner M, Issa MY, Elbendary HM, Stanley V, Maroofian R, Gleeson JG, Zaki MS, Senderek J, Pandey UB. Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nat Commun. 2021 May 7;12(1):2558. doi: 10.1038/s41467-021-22627-w. PMID: 33963192; PMCID: PMC8105379. <a href="https://doi.org/10.1038/s41467-021-22627-w">Link to article on publisher's site</a></p>
dc.identifier.issn2041-1723 (Linking)
dc.identifier.doi10.1038/s41467-021-22627-w
dc.identifier.pmid33963192
dc.identifier.urihttp://hdl.handle.net/20.500.14038/41950
dc.description<p>Full author list omitted for brevity. For the full list of authors, see article.</p>
dc.description.abstractGEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=33963192&dopt=Abstract">Link to Article in PubMed</a></p>
dc.rightsCopyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDevelopmental disorders
dc.subjectNeurodevelopmental disorders
dc.subjectNervous System Diseases
dc.subjectNeurology
dc.subjectNeuroscience and Neurobiology
dc.titleLoss of function mutations in GEMIN5 cause a neurodevelopmental disorder
dc.typeJournal Article
dc.source.journaltitleNature communications
dc.source.volume12
dc.source.issue1
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=5788&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/4755
dc.identifier.contextkey25262250
refterms.dateFOA2022-08-23T16:51:55Z
html.description.abstract<p>GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.</p>
dc.identifier.submissionpathoapubs/4755
dc.contributor.departmentDepartment of Neurology
dc.source.pages2558


Files in this item

Thumbnail
Name:
s41467_021_22627_w.pdf
Size:
5.592Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.