Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor
Authors
Pajak, JoshuaDill, Erik
Reyes-Aldrete, Emilio
White, Mark A.
Kelch, Brian A
Jardine, Paul J.
Arya, Gaurav
Morais, Marc C.
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyDocument Type
Journal ArticlePublication Date
2021-06-21Keywords
double-stranded DNA virusesstructure
ATPase ring motors
Molecular Biology
Nucleic Acids, Nucleotides, and Nucleosides
Structural Biology
Viruses
Metadata
Show full item recordAbstract
Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccphi28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous phi29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases.Source
Pajak J, Dill E, Reyes-Aldrete E, White MA, Kelch BA, Jardine PJ, Arya G, Morais MC. Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor. Nucleic Acids Res. 2021 Jun 21;49(11):6474-6488. doi: 10.1093/nar/gkab372. PMID: 34050764; PMCID: PMC8216284. Link to article on publisher's site
DOI
10.1093/nar/gkab372Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42011PubMed ID
34050764Related Resources
Rights
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1093/nar/gkab372
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.