Show simple item record

dc.contributor.authorSun, Jun
dc.contributor.authorShim, Jae-Hyuck
dc.contributor.authorXu, Ren
dc.contributor.authorGreenblatt, Matthew B.
dc.date2022-08-11T08:10:01.000
dc.date.accessioned2022-08-23T16:52:27Z
dc.date.available2022-08-23T16:52:27Z
dc.date.issued2021-07-29
dc.date.submitted2022-02-03
dc.identifier.citation<p>Sun J, Shin DY, Eiseman M, Yallowitz AR, Li N, Lalani S, Li Z, Cung M, Bok S, Debnath S, Marquez SJ, White TE, Khan AG, Lorenz IC, Shim JH, Lee FS, Xu R, Greenblatt MB. SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nat Commun. 2021 Jul 29;12(1):4611. doi: 10.1038/s41467-021-24819-w. PMID: 34326333; PMCID: PMC8322311. <a href="https://doi.org/10.1038/s41467-021-24819-w">Link to article on publisher's site</a></p>
dc.identifier.issn2041-1723 (Linking)
dc.identifier.doi10.1038/s41467-021-24819-w
dc.identifier.pmid34326333
dc.identifier.urihttp://hdl.handle.net/20.500.14038/42055
dc.description<p>Full author list omitted for brevity. For the full list of authors, see article.</p>
dc.description.abstractHedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=34326333&dopt=Abstract">Link to Article in PubMed</a></p>
dc.rightsCopyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBone development
dc.subjectMembrane proteins
dc.subjectMorphogen signalling
dc.subjectAmino Acids, Peptides, and Proteins
dc.subjectCell Biology
dc.subjectDevelopmental Biology
dc.titleSLITRK5 is a negative regulator of hedgehog signaling in osteoblasts
dc.typeJournal Article
dc.source.journaltitleNature communications
dc.source.volume12
dc.source.issue1
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=5891&amp;context=oapubs&amp;unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/oapubs/4858
dc.identifier.contextkey27978608
refterms.dateFOA2022-08-23T16:52:27Z
html.description.abstract<p>Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.</p>
dc.identifier.submissionpathoapubs/4858
dc.contributor.departmentDivision of Rheumatology, Department of Medicine
dc.source.pages4611


Files in this item

Thumbnail
Name:
s41467_021_24819_w.pdf
Size:
5.110Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.