• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A biochemical framework for RNA silencing in plants

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Tang, Guiliang
    Reinhart, Brenda J.
    Bartel, David P.
    Zamore, Phillip D.
    UMass Chan Affiliations
    Department of Biochemistry and Molecular Pharmacology
    Document Type
    Journal Article
    Publication Date
    2003-01-07
    Keywords
    Arabidopsis
    Arabidopsis Proteins
    Endoribonucleases
    *Gene Expression Regulation, Plant
    Genes, Dominant
    Homeodomain Proteins
    MicroRNAs
    Plant Extracts
    Plant Proteins
    *RNA Interference
    RNA Replicase
    RNA, Double-Stranded
    RNA, Plant
    RNA, Small Interfering
    Ribonuclease III
    Triticum
    Life Sciences
    Medicine and Health Sciences
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC195971/
    Abstract
    RNA silencing phenomena were first discovered in plants, yet only the RNA interference pathway in animals has been subject to biochemical analysis. Here, we extend biochemical analysis to plant RNA silencing. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs, as well as an RNA-dependent RNA polymerase activity that can convert exogenous single-stranded RNA into dsRNA. In this plant embryo extract, an endogenous microRNA (miRNA) that lacks perfect complementarity to its RNA targets nonetheless acts as a small interfering RNA. The miRNA guides an endonuclease to cleave efficiently wild-type Arabidopsis PHAVOLUTA mRNA, but not a dominant mutant previously shown to perturb leaf development. This finding supports the view that plant miRNAs direct RNAi and that miRNA-specified mRNA destruction is important for proper plant development. Thus, endonuclease complexes guided by small RNAs are a common feature of RNA silencing in both animals and plants.
    Source

    Genes Dev. 2003 Jan 1;17(1):49-63. Link to article on publisher's site

    DOI
    10.1101/gad.1048103
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/42217
    PubMed ID
    12514099
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1101/gad.1048103
    Scopus Count
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling

      Malinowski, Robert; Higgins, Rebecca; Luo, Yuan; Piper, Laverne; Nazir, Azka; Bajwa, Vikramjit S.; Clouse, Steven D.; Thompson, Paul R; Stratmann, Johannes W. (2009-07-01)
      The tomato wound signal systemin is perceived by a specific high-affinity, saturable, and reversible cell surface receptor. This receptor was identified as the receptor-like kinase SR160, which turned out to be identical to the brassinosteroid receptor BRI1. Recently, it has been shown that the tomato bri1 null mutant cu3 is as sensitive to systemin as wild type plants. Here we explored these contradictory findings by studying the responses of tobacco plants (Nicotiana tabacum) to systemin. A fluorescently-labeled systemin analog bound specifically to plasma membranes of tobacco suspension-cultured cells that expressed the tomato BRI1-FLAG transgene, but not to wild type tobacco cells. On the other hand, signaling responses to systemin, such as activation of mitogen-activated protein kinases and medium alkalinization, were neither increased in BRI1-FLAG-overexpressing tobacco cells nor decreased in BRI1-silenced cells as compared to levels in untransformed control cells. Furthermore, in transgenic tobacco plants BRI1-FLAG became phosphorylated on threonine residues in response to brassinolide application, but not in response to systemin. When BRI1 transcript levels were reduced by virus-induced gene silencing in tomato plants, the silenced plants displayed a phenotype characteristic of bri1 mutants. However, their response to overexpression of the Prosystemin transgene was the same as in control plants. Taken together, our data suggest that BRI1 can function as a systemin binding protein, but that binding of the ligand does not transduce the signal into the cell. This unusual behavior and the nature of the elusive systemin receptor will be discussed.
    • Thumbnail

      Enhanced Y1H assays for Arabidopsis

      Gaudinier, Allison; Zhang, Lifang; Reece-Hoyes, John S.; Taylor-Teeples, Mallorie; Pu, Li; Liu, Zhijie; Breton, Ghislain; Pruneda-Paz, Jose L.; Kim, Dahae; Kay, Steve A.; et al. (2011-10-30)
      We present an Arabidopsis thaliana full-length transcription factor resource of 92% of root stele-expressed transcription factors and 74.5% of root-expressed transcription factors. We demonstrate its use with enhanced yeast one-hybrid (eY1H) screening for rapid, systematic mapping of plant transcription factor-promoter interactions. We identified 158 interactions with 13 stele-expressed promoters, many of which occur physically or are regulatory in planta.
    • Thumbnail

      Interrogating Plant Cell Culture Library for Novel Antimicrobial Agents

      Solitro, John; Zhang, Yong; Bartolo, Vanessa; Popchuk, Alexander; Savinov, Sergey; Ma, Lin-Jun; Normanly, Jennifer; Seidler, Tristram; Vierling, Elizabeth (2016-05-20)
      The Plant Cell Culture Library (PCCL) at UMass Amherst contains more than 2,200 live plant cell cultures, representing diverse plant species from around the world. The availability of this collection offers a rich resource for us to discover bioactive phytochemicals and uncover their mechanisms of action. Using data-mining surveys of bioactive plant extracts, I have organized subsets of PCCL cell lines that are likely to possess antifungal, antibacterial, antiviral, anthelmintic, anti-trypanosomal, or anticancer properties, which prove to be useful when deciding which species to screen first against a specific pathogen. Another distinct advantage of using the live plant cells in this research is the ability to stimulate the biosynthesis of pathogen-specific phytochemicals upon simulation of an attack (elicitation) by the microorganism in question. This could be accomplished by pathogen homogenates or plant hormones responsible for mounting defenses to infection. Over the past six months, I have been working to optimize elicitation, lysis, and extraction conditions for obtaining high-throughput screening materials to be used against variable pathogens. Equipped with crude extracts from appropriately elicited cells, I am collaborating with a multidisciplinary team of UMass scientists to develop and implement high-throughput screening protocols for profiling a large number of plant-derived materials against various pathogens. Recently, I have screened a small pool (40) of extracts derived from cell lines with predicted anti-fungal properties against the highly resistant strain of fungus Fusarium oxysporum, one of the causal agents of an opportunistic infection often seen in immunocompromised patients known as fusariosis. Gratifyingly, I have found several plant species that produced specialized metabolites with better antifungal activity than the leading antibiotic against F. oxysporum, Amphotericin B, validating this line of antimicrobial research. We are also actively reaching out to other academic labs partners to form partnerships in diverse antimicrobial research venues.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.