The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans
Authors
Soto, Martha C.Qadota, Hiroshi
Kasuya, Katsuhisa
Inoue, Makiko
Tsuboi, Daisuke
Mello, Craig C.
Kaibuchi, Kozo
UMass Chan Affiliations
Program in Molecular Medicine and Cell BiologyDocument Type
Journal ArticlePublication Date
2002-03-06Keywords
*Adaptor Proteins, Signal TransducingAmino Acid Sequence
Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
purification
Carrier Proteins
Cell Compartmentation
*Cell Movement
Conserved Sequence
*Drosophila Proteins
Genes, Helminth
Molecular Sequence Data
Morphogenesis
Oviposition
Sequence Homology, Amino Acid
rac GTP-Binding Proteins
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
During body morphogenesis precisely coordinated cell movements and cell shape changes organize the newly differentiated cells of an embryo into functional tissues. Here we describe two genes, gex-2 and gex-3, whose activities are necessary for initial steps of body morphogenesis in Caenorhabditis elegans. In the absence of gex-2 and gex-3 activities, cells differentiate properly but fail to become organized. The external hypodermal cells fail to spread over and enclose the embryo and instead cluster on the dorsal side. Postembryonically gex-3 activity is required for egg laying and for proper morphogenesis of the gonad. GEX-2 and GEX-3 proteins colocalize to cell boundaries and appear to directly interact. GEX-2 and GEX-3 are highly conserved, with vertebrate homologs implicated in binding the small GTPase Rac and a GEX-3 Drosophila homolog, HEM2/NAP1/KETTE, that interacts genetically with Rac pathway mutants. Our findings suggest that GEX-2 and GEX-3 may function at cell boundaries to regulate cell migrations and cell shape changes required for proper morphogenesis and development.Source
Genes Dev. 2002 Mar 1;16(5):620-32. Link to article on publisher's site
DOI
10.1101/gad.955702Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42221PubMed ID
11877381Related Resources
ae974a485f413a2113503eed53cd6c53
10.1101/gad.955702
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.