A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator
UMass Chan Affiliations
Program in Molecular MedicineDocument Type
Journal ArticlePublication Date
1996-02-01Keywords
AdolescentAged
Amino Acid Sequence
Animals
Base Sequence
Child, Preschool
Drosophila
Female
Hela Cells
Humans
Leukemia, Lymphocytic, Chronic, B-Cell
Male
Mitogens
Molecular Sequence Data
Molecular Weight
Nuclear Proteins
Phosphorylation
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Protein-Serine-Threonine Kinases
purification
Recombinant Fusion Proteins
Sequence Analysis
Sequence Homology, Amino Acid
Signal Transduction
Substrate Specificity
Signal transduction
kinases
Drosophila
leukemia
trithorax]
Biochemistry
Cell Biology
Developmental Biology
Molecular Biology
Metadata
Show full item recordAbstract
Although the ultimate targets of many signal transduction pathways are nuclear transcription factors, the vast majority of known protein kinases are cytosolic. Here, we report on a novel human kinase that is present exclusively in the nucleus. Kinase activity is increased upon cellular proliferation and is markedly elevated in patients with acute and chronic lymphocytic leukemias. We have identified a human gene that encodes this nuclear kinase and find that it is closely related to Drosophila female sterile homeotic (fsh), a developmental regulator with no known biochemical activity. Collectively, these results suggest that this nuclear kinase is a component of a signal transduction pathway that plays a role in Drosophila development and human growth control.Source
Genes Dev. 1996 Feb 1;10(3):261-71. Link to article on publisher's site
DOI
10.1101/gad.10.3.261Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42232PubMed ID
8595877Related Resources
Rights
© 1996 by Cold Spring Harbor Laboratory Press. Publisher PDF posted as allowed by the publisher's license to publish at https://genome.cshlp.org/site/misc/GR_LicenseToPublish_2014_v4.pdf.ae974a485f413a2113503eed53cd6c53
10.1101/gad.10.3.261
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control systemAkerley, Brian J.; Miller, Jeff F. (1993-06-01)The products of the bvgAS locus activate expression of a majority of the known Bordetella virulence factors but also exert negative control over a class of genes called vrg genes (bvg-repressed genes). BvgAS negatively controls the production of flagella and the phenotype of motility in Bordetella bronchiseptica. In this study flaA, the flagellin gene, was cloned and characterized to facilitate studies of this negative control pathway. An internal flaA probe detected hybridizing sequences on genomic Southern blots of Bordetella pertussis, Bordetella parapertussis, and Bordetella avium, although B. pertussis and B. parapertussis are nonmotile. FlaA is similar to the FliC flagellins of Salmonella typhimurium and Escherichia coli, and flaA complemented an E. coli flagellin mutant. Insertional inactivation of the chromosomal flaA locus eliminated motility, which was restored by complementation with the wild-type locus. Analysis of flaA mRNA production by Northern (RNA) blotting and primer extension indicated that negative regulation by BvgAS occurs at the level of transcription. The transcriptional start site of flaA mapped near a consensus site for the alternative sigma factor, sigma F, encoded by fliA in E. coli and S. typhimurium. Consistent with a role for a fliA analog in B. bronchiseptica, transcriptional activation of a flaA-lacZ fusion in E. coli required fliA and a flaA-linked locus designated frl.frl also efficiently complemented mutations in the flagellar master regulatory locus, flhDC, of E. coli. Our analysis of the motility phenotype of B. bronchiseptica suggests that the Bordetella virulence control system mediates transcriptional control of flaA through a regulatory hierarchy that includes the frl locus and an alternative sigma factor.
-
The unique catalytic subunit of sperm cAMP-dependent protein kinase is the product of an alternative Calpha mRNA expressed specifically in spermatogenic cellsSan Agustin, Jovenal T.; Wilkerson, Curtis G.; Witman, George B. (2000-09-12)cAMP-dependent protein kinase has a central role in the control of mammalian sperm capacitation and motility. Previous protein biochemical studies indicated that the only cAMP-dependent protein kinase catalytic subunit (C) in ovine sperm is an unusual isoform, termed C(s), whose amino terminus differs from those of published C isoforms of other species. Isolation and sequencing of cDNA clones encoding ovine C(s) and Calpha1 (the predominant somatic isoform) now reveal that C(s) is the product of an alternative transcript of the Calpha gene. C(s) cDNA clones from murine and human testes also were isolated and sequenced, indicating that C(s) is of ancient origin and widespread in mammals. In the mouse, C(s) transcripts were detected only in testis and not in any other tissue examined, including ciliated tissues and ovaries. Finally, immunohistochemistry of the testis shows that C(s) first appears in pachytene spermatocytes. This is the first demonstration of a cell type-specific expression for any C isoform. The conservation of C(s) throughout mammalian evolution suggests that the unique structure of C(s) is important in the subunit's localization or function within the sperm.
-
Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranesPestonjamasp, K.; Amieva, M. R.; Strassel, C. P.; Nauseef, W. M.; Furthmayr, H.; Luna, Elizabeth J. (1995-03-01)Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein.