PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes
UMass Chan Affiliations
Program in Molecular MedicineDocument Type
Journal ArticlePublication Date
2005-04-13Keywords
1-Phosphatidylinositol 3-Kinase3T3-L1 Cells
Adipocytes
Animals
Biological Transport
Deoxyglucose
Dose-Response Relationship, Drug
Gene Deletion
Gene Silencing
Glycogen Synthase Kinase 3
Humans
Insulin
MAP Kinase Signaling System
Mice
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
PTEN Phosphohydrolase
Phosphatidylinositol Phosphates
Phosphoric Monoester Hydrolases
Phosphorylation
Protein Tyrosine Phosphatases
Protein-Serine-Threonine Kinases
Proto-Oncogene Proteins
Proto-Oncogene Proteins c-akt
RNA Interference
RNA, Small Interfering
*Signal Transduction
Time Factors
Tumor Suppressor Proteins
src Homology Domains
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3'-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes.Source
J Biol Chem. 2005 Jun 10;280(23):22523-9. Epub 2005 Apr 11. Link to article on publisher's siteDOI
10.1074/jbc.M501949200Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42329PubMed ID
15824124Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1074/jbc.M501949200
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
A mammalian scaffold complex that selectively mediates MAP kinase activationWhitmarsh, Alan J.; Cavanagh, Julie; Tournier, Cathy; Yasuda, Jun; Davis, Roger J. (1998-09-11)The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.
-
Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathwaysKelkar, Nyaya; Standen, Claire L.; Davis, Roger J. (2005-03-16)The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
-
Molecular determinants that mediate selective activation of p38 MAP kinase isoformsEnslen, Herve; Brancho, Deborah Marie; Davis, Roger J. (2000-03-16)The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.