Activation of c-Myc contributes to bovine papillomavirus type 1 E7-induced cell proliferation
UMass Chan Affiliations
Department of MedicineDocument Type
Journal ArticlePublication Date
2003-08-26Keywords
AnimalsBromodeoxyuridine
CDC2-CDC28 Kinases
Cell Cycle Proteins
Cell Division
Cyclin A
Cyclin E
Cyclin-Dependent Kinase 2
Cyclin-Dependent Kinase Inhibitor p27
DNA
Down-Regulation
Flow Cytometry
Immunoblotting
Luciferases
Mice
NIH 3T3 Cells
Oncogene Proteins, Viral
Plasmids
Proto-Oncogene Proteins c-myc
Retinoblastoma Protein
Reverse Transcriptase Polymerase Chain Reaction
S Phase
Trans-Activation (Genetics)
Transfection
Tumor Suppressor Proteins
Up-Regulation
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Inactivation of the tumor suppressor pRB by the human papillomavirus (HPV) oncoprotein E7 is a mechanism by which HPV promotes cell growth. The bovine papillomavirus type 1 (BPV-1) E7 does not bind pRB efficiently yet is required for full transformation of murine cells by BPV-1. In the present study, we investigated the mechanism of BPV-1 E7-induced cell proliferation. Our studies indicate that expression of BPV-1 E7 induces DNA synthesis and stimulates cells to enter S phase in quiescent cells. The induction of cell proliferation by BPV-1 E7 can occur in the retinoblastoma gene (Rb)-null cells, suggesting an Rb-independent mechanism. Consistent with this observation, BPV-1 E7 does not efficiently activate the transcription of the E2F family of transcription factors (E2F)-responsive promoters. Notably, c-Myc is able to induce cells to enter S phase in quiescent cells through an Rb/E2F-independent pathway. Significantly, c-Myc levels are increased in BPV-1 E7-expressing cells. Moreover, expression of a dominant negative c-Myc mutant inhibited BPV-1 E7-induced DNA synthesis. Consistent with the notion that c-Myc could down-regulate p27 and activate Cdk2, p27 level is decreased while both cyclin A and cyclin E-associated kinase activities are up-regulated in BPV-1 E7-expressing cells. These studies indicate an important role for c-Myc in BPV-1 E7-induced cell proliferation.Source
J Biol Chem. 2003 Oct 31;278(44):43163-8. Epub 2003 Aug 22. Link to article on publisher's siteDOI
10.1074/jbc.M306008200Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42357PubMed ID
12937171Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1074/jbc.M306008200
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.