A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling
UMass Chan Affiliations
Program in Molecular MedicineDocument Type
Journal ArticlePublication Date
2001-11-06Keywords
1-Phosphatidylinositol 3-KinaseActin-Related Protein 2
Actin-Related Protein 3
Actins
Biological Transport
*Cytoskeletal Proteins
Glucose Transporter Type 4
Humans
Insulin
Monosaccharide Transport Proteins
*Muscle Proteins
Nerve Tissue Proteins
Wiskott-Aldrich Syndrome Protein, Neuronal
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Recruitment of intracellular glucose transporter 4 (GLUT4) to the plasma membrane of fat and muscle cells in response to insulin requires phosphatidylinositol (PI) 3-kinase as well as a proposed PI 3-kinase-independent pathway leading to activation of the small GTPase TC10. Here we show that in cultured adipocytes insulin causes acute cortical localization of the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related protein-3 (Arp3) as well as cortical F-actin polymerization by a mechanism that is insensitive to the PI 3-kinase inhibitor wortmannin. Expression of the dominant inhibitory N-WASP-DeltaWA protein lacking the Arp and actin binding regions attenuates the cortical F-actin rearrangements by insulin in these cells. Remarkably, the N-WASP-DeltaWA protein also inhibits insulin action on GLUT4 translocation, indicating dependence of GLUT4 recycling on N-WASP-directed cortical F-actin assembly. TC10 exhibits sequence similarity to Cdc42 and has been reported to bind N-WASP. We show the inhibitory TC10 (T31N) mutant, which abrogates insulin-stimulated GLUT4 translocation and glucose transport, also inhibits both cortical localization of N-WASP and F-actin formation in response to insulin. These findings reveal that N-WASP likely functions downstream of TC10 in a PI 3-kinase-independent insulin signaling pathway to mobilize cortical F-actin, which in turn promotes GLUT4 responsiveness to insulin.Source
J Biol Chem. 2002 Jan 4;277(1):509-15. Epub 2001 Nov 1. Link to article on publisher's siteDOI
10.1074/jbc.M108280200Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42378PubMed ID
11694514Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1074/jbc.M108280200
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.