• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Role of the N-terminal region of the regulatory light chain in the dephosphorylation of myosin by myosin light chain phosphatase

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Ikebe, Reiko
    Reardon, Sheila
    Mitsui, Toshiaki
    Ikebe, Mitsuo
    UMass Chan Affiliations
    Department of Physiology
    Document Type
    Journal Article
    Publication Date
    1999-10-09
    Keywords
    Amino Acid Sequence
    Animals
    Molecular Sequence Data
    Myosin Light Chains
    Myosin-Light-Chain Phosphatase
    Phosphoprotein Phosphatases
    Phosphorylation
    Protein Kinase C
    Substrate Specificity
    Turkeys
    Life Sciences
    Medicine and Health Sciences
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1074/jbc.274.42.30122
    Abstract
    Myosin regulatory light chain (RLC) is phosphorylated at various sites at its N-terminal region, and heterotrimeric myosin light chain phosphatase (MLCP) has been assigned as a physiological phosphatase that dephosphorylates myosin in vivo. Specificity of MLCP toward the various phosphorylation sites of RLC was studied, as well as the role of the N-terminal region of RLC in the dephosphorylation of myosin by MLCP. MLCP dephosphorylated phosphoserine 19, phosphothreonine 18, and phosphothreonine 9 efficiently with almost identical rates, whereas it failed to dephosphorylate phosphorylated serine 1/serine 2. Deletion of the N-terminal seven amino acid residues of RLC markedly decreased the dephosphorylation rate of phosphoserine 19 of RLC incorporated in the myosin molecule, whereas this deletion did not significantly affect the dephosphorylation rate of isolated RLC. On the other hand, deletion of only four N-terminal amino acid residues showed no effect on dephosphorylation of phosphoserine 19 of incorporated RLC. The inhibition of dephosphorylation by deletion of the seven N-terminal residues was also found with the catalytic subunit of MLCP. Phosphorylation at serine 1/serine 2 and threonine 9 did not influence the dephosphorylation rate of serine 19 and threonine 18 by MLCP. These results suggest that the N-terminal region of RLC plays an important role in substrate recognition of MLCP.
    Source

    J Biol Chem. 1999 Oct 15;274(42):30122-6.

    DOI
    10.1074/jbc.274.42.30122
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/42411
    PubMed ID
    10514500
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1074/jbc.274.42.30122
    Scopus Count
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.