Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
Authors
Pazour, Gregory J.Dickert, Bethany L.
Vucica, Yvonne
Seeley, E. Scott
Rosenbaum, Joel L.
Witman, George B.
Cole, Douglas G.
Document Type
Journal ArticlePublication Date
2000-11-04Keywords
Amino Acid SequenceAnimals
Chlamydomonas
Cilia
Cloning, Molecular
Conserved Sequence
Flagella
Humans
Kidney
Meiosis
Mice
Mice, Knockout
Microscopy, Electron, Scanning
Molecular Motor Proteins
Molecular Sequence Data
Mutation
Phenotype
Polycystic Kidney, Autosomal Recessive
Protein Binding
Protein Subunits
Proteins
Protozoan Proteins
Repetitive Sequences, Amino Acid
Sequence Alignment
Sequence Homology, Amino Acid
*Tumor Suppressor Proteins
Cell Biology
Physiology
Metadata
Show full item recordAbstract
Intraflagellar transport (IFT) is a rapid movement of multi-subunit protein particles along flagellar microtubules and is required for assembly and maintenance of eukaryotic flagella. We cloned and sequenced a Chlamydomonas cDNA encoding the IFT88 subunit of the IFT particle and identified a Chlamydomonas insertional mutant that is missing this gene. The phenotype of this mutant is normal except for the complete absence of flagella. IFT88 is homologous to mouse and human genes called Tg737. Mice with defects in Tg737 die shortly after birth from polycystic kidney disease. We show that the primary cilia in the kidney of Tg737 mutant mice are shorter than normal. This indicates that IFT is important for primary cilia assembly in mammals. It is likely that primary cilia have an important function in the kidney and that defects in their assembly can lead to polycystic kidney disease.Source
J Cell Biol. 2000 Oct 30;151(3):709-18.Permanent Link to this Item
http://hdl.handle.net/20.500.14038/42594PubMed ID
11062270Related Resources
Link to Article in PubMedRelated items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPasesCantor, Sharon B.; Urano, Takeshi; Feig, Larry A. (1995-08-01)Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.
-
Identification and molecular cloning of a human selenocysteine insertion sequence-binding protein. A bifunctional role for DNA-binding protein BShen, Qichang; Wu, Rui; Leonard, Jack L.; Newburger, Peter E. (1998-04-16)Prokaryotic and eukaryotic cells incorporate the unusual amino acid selenocysteine at a UGA codon, which conventionally serves as a termination signal. Translation of eukaryotic selenoprotein mRNA requires a nucleotide selenocysteine insertion sequence in the 3'-untranslated region. We report the molecular cloning of the binding protein that recognizes the selenocysteine insertion sequence element in human cellular glutathione peroxidase gene (GPX1) transcripts and its identification as DNA-binding protein B, a member of the EFIA/dbpB/YB-1 family. The predicted amino acid sequence contains four arginine-rich RNA-binding motifs, and one segment shows strong homology to the human immunodeficiency virus Tat domain. Recombinant DNA-binding protein B binds the selenocysteine insertion sequence elements from the GPX1 and type I iodothyronine 5'-deiodinase genes in RNA electrophoretic mobility shift assays and competes with endogenous GPX1 selenocysteine insertion sequence binding activity in COS-1 cytosol extracts. Addition of antibody to DNA-binding protein B to COS-1 electromobility shift assays produces a slowly migrating "supershift" band. The molecular cloning and identification of DNA-binding protein B as the first eukaryotic selenocysteine insertion sequence-binding protein opens the way to the elucidation of the entire complex necessary for the alternative reading of the genetic code that permits translation of selenoproteins.