• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    11062270.pdf
    Size:
    476.7Kb
    Format:
    PDF
    Download
    Authors
    Pazour, Gregory J.
    Dickert, Bethany L.
    Vucica, Yvonne
    Seeley, E. Scott
    Rosenbaum, Joel L.
    Witman, George B.
    Cole, Douglas G.
    UMass Chan Affiliations
    Program in Molecular Medicine
    Department of Cell Biology
    Document Type
    Journal Article
    Publication Date
    2000-11-04
    Keywords
    Amino Acid Sequence
    Animals
    Chlamydomonas
    Cilia
    Cloning, Molecular
    Conserved Sequence
    Flagella
    Humans
    Kidney
    Meiosis
    Mice
    Mice, Knockout
    Microscopy, Electron, Scanning
    Molecular Motor Proteins
    Molecular Sequence Data
    Mutation
    Phenotype
    Polycystic Kidney, Autosomal Recessive
    Protein Binding
    Protein Subunits
    Proteins
    Protozoan Proteins
    Repetitive Sequences, Amino Acid
    Sequence Alignment
    Sequence Homology, Amino Acid
    *Tumor Suppressor Proteins
    Cell Biology
    Physiology
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    Intraflagellar transport (IFT) is a rapid movement of multi-subunit protein particles along flagellar microtubules and is required for assembly and maintenance of eukaryotic flagella. We cloned and sequenced a Chlamydomonas cDNA encoding the IFT88 subunit of the IFT particle and identified a Chlamydomonas insertional mutant that is missing this gene. The phenotype of this mutant is normal except for the complete absence of flagella. IFT88 is homologous to mouse and human genes called Tg737. Mice with defects in Tg737 die shortly after birth from polycystic kidney disease. We show that the primary cilia in the kidney of Tg737 mutant mice are shorter than normal. This indicates that IFT is important for primary cilia assembly in mammals. It is likely that primary cilia have an important function in the kidney and that defects in their assembly can lead to polycystic kidney disease.
    Source
    J Cell Biol. 2000 Oct 30;151(3):709-18.
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/42594
    PubMed ID
    11062270
    Related Resources
    Link to Article in PubMed
    Collections
    UMass Chan Faculty and Researcher Publications
    Witman Lab

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Selective interaction of JNK protein kinase isoforms with transcription factors

      Gupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)
      The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
    • Thumbnail

      Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases

      Cantor, Sharon B.; Urano, Takeshi; Feig, Larry A. (1995-08-01)
      Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.
    • Thumbnail

      Identification and molecular cloning of a human selenocysteine insertion sequence-binding protein. A bifunctional role for DNA-binding protein B

      Shen, Qichang; Wu, Rui; Leonard, Jack L.; Newburger, Peter E. (1998-04-16)
      Prokaryotic and eukaryotic cells incorporate the unusual amino acid selenocysteine at a UGA codon, which conventionally serves as a termination signal. Translation of eukaryotic selenoprotein mRNA requires a nucleotide selenocysteine insertion sequence in the 3'-untranslated region. We report the molecular cloning of the binding protein that recognizes the selenocysteine insertion sequence element in human cellular glutathione peroxidase gene (GPX1) transcripts and its identification as DNA-binding protein B, a member of the EFIA/dbpB/YB-1 family. The predicted amino acid sequence contains four arginine-rich RNA-binding motifs, and one segment shows strong homology to the human immunodeficiency virus Tat domain. Recombinant DNA-binding protein B binds the selenocysteine insertion sequence elements from the GPX1 and type I iodothyronine 5'-deiodinase genes in RNA electrophoretic mobility shift assays and competes with endogenous GPX1 selenocysteine insertion sequence binding activity in COS-1 cytosol extracts. Addition of antibody to DNA-binding protein B to COS-1 electromobility shift assays produces a slowly migrating "supershift" band. The molecular cloning and identification of DNA-binding protein B as the first eukaryotic selenocysteine insertion sequence-binding protein opens the way to the elucidation of the entire complex necessary for the alternative reading of the genetic code that permits translation of selenoproteins.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.